• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, November 7, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Arteries respond in opposite ways for males and females

Bioengineer by Bioengineer
April 29, 2020
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

UC Davis Health researchers lead the way toward sex-specific hypertension treatment

IMAGE

Credit: Copyright UC Regents/UC Davis Health

A protein known to expand blood vessels — key to controlling conditions like high blood pressure — actually has different functions in males and females, new UC Davis Health research shows.

Conducted using arterial cells from mice, the study is the first to identify sex-based distinctions in how the protein –Kv2.1 — works.

Kv2.1 is generally known to form calcium channels that dilate blood vessels. In arterial cells from female mice, however, it contracted blood vessels.

The research was led by Luis Fernando Santana, professor and chair of physiology and membrane biology, and graduate student Samantha O’Dwyer. It is published in the Proceedings of the National Academy of Sciences.

“We were shocked at the difference and the strength of that difference,” Santana said. “We think we’ve found the physiological explanation for what some of our clinical colleagues are seeing in patients ? some high blood pressure medications tend to work better for men, while others work better for women.”

Santana and his team study calcium channels, their effects on heart muscle cells and how to alter that process to improve treatments for cardiovascular disease. They are especially interested in finding new treatments for hypertension, because it affects 45% of adults in the U.S. and is linked with serious conditions such as stroke, heart failure and aneurysm.

The current study focused on how Kv2.1 changes calcium channel organization and function. The investigators found that Kv2.1 promotes tight clustering of calcium channels. Kv2.1 expression is higher in cells from female mice, leading to larger clusters. This caused higher calcium levels in arterial cells and vasoconstriction. In arterial cells from male mice, Kv2.1 expression was not as high and calcium channel clusters were much smaller, causing vasodilation.

“This difference can only be attributed to the sex of the research mice,” Santana said.

The next step, Santana said, is to determine what causes the different roles of Kv2.1. He plans to investigate the potential that sex hormones regulate the protein in arterial cells. His ultimate goal is tailored treatment strategies for hypertension for men and women.

“Until recently, the research community only used male mice to investigate heart disease,” Santana said. “Our study proves what a major oversight that has been.”

###

Other researchers on the study were Stephanie Palacio, Collin Matsumoto, Laura Guarina, Nicholas Klug, Sendoa Tajada, Barbara Rosati, David McKinnon and James Trimmer, all of UC Davis. Rosati also is affiliated with the State University of New York.

The study was supported by grants from the National Institutes of Health (grant numbers 5R01HL085686, 1R01HL144071, 1OT2OD026580 and T32HL086350) and the American Heart Association.

“Kv2.1 Channels Play Opposing Roles in Regulating Membrane Potential, Ca2+ Channel Function, and Myogenic Tone in Arterial Smooth Muscle” is available online.

More information about UC Davis Health, including its Department of Physiology and Membrane Biology,” is available at health.ucdavis.edu.

Media Contact
Karen Finney
[email protected]

Original Source

https://health.ucdavis.edu/health-news/newsroom/arteries-respond-in-opposite-ways-for-males-and-females/2020/04

Related Journal Article

http://dx.doi.org/10.1073/pnas.1917879117

Tags: CardiologyMedicine/HealthPharmaceutical SciencesPhysiology
Share12Tweet8Share2ShareShareShare2

Related Posts

Exploring Complementary and Alternative Medicine in Autistic Preschoolers

November 7, 2025

Combating Neuroendocrine Prostate Cancer via Nitric Oxide

November 7, 2025

UniSA Pioneers National Pilot Program Enhancing Medication Safety in Aged Care

November 7, 2025

Unraveling μ-Opioid Receptor Signaling Plasticity

November 7, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    206 shares
    Share 82 Tweet 52
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1301 shares
    Share 520 Tweet 325
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Exploring Complementary and Alternative Medicine in Autistic Preschoolers

Combating Neuroendocrine Prostate Cancer via Nitric Oxide

UniSA Pioneers National Pilot Program Enhancing Medication Safety in Aged Care

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.