• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, October 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Bioengineering

An artificial bone scaffold

Bioengineer by Bioengineer
September 19, 2013
in Bioengineering
Reading Time: 2 mins read
0
Professor Lee Byong Taek at Soonchunhyang University

Professor Lee Byong Taek at Soonchunhyang University

Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

An artificial bone scaffold produced by researchers in South Korea could enhance the treatment of bone damage and defects through bone grafts.

Traditionally, bone grafts require material to be transplanted from either another bone of the patient or from a donor. Artificial grafts offer an easier and less risky process, providing an artificial scaffold on which bone cells can grow. However, developing a material with ideal characteristics has proved difficult. The structure of natural bone provides an optimal compromise between weight and strength, and the natural scaffold is porous to allow ingrowth of bone cells. An ideal artificial substitute would recreate all of these aspects.

A research team led by Professor Lee Byong Taek at Soonchunhyang University have created an artificial scaffold that closely imitates the structure of small bones such as those in fingers and toes. Writing in the current issue of Science and Technology of Advanced Materials, they describe how the scaffold also allows efficient growth of bone cells on its surface, thereby meeting the criteria of both strength and biocompatibility needed to be used in patients.

To achieve this, the researchers harnessed the advantages of two different materials. Both were ceramics already used in artificial bone, each with different benefits. The first was hydroxyapatite, a material based on calcium phosphate and which is a major constituent of natural bone. While hydroxyapatite encourages bone cell ingrowth, when it is porous like natural bone, it is mechanically weak. The second material, zirconium dioxide, is stronger but cells do not grow on it. The new scaffold has a layered structure: hydroxyapatite on the outer surfaces to encourage cell growth, and zirconium dioxide beneath to provide strength.

Previous attempts at similar composite structures have suffered because the traditional production process for ceramics requires heating to extremely high temperatures, and unequal expansion of the different materials can cause cracking. Using microwaves for heating allowed the researchers to produce a more stable scaffold, and a gradient layer between the hydroxyapatite and zirconium dioxide, which had intermediate properties, alleviated the effects of differing expansion.

To assess the interaction of the final scaffold with cells, the team first incubated cells in the presence of the ceramics and tested for genetic markers of growth. They found no difference when compared to cells grown in control conditions, meaning the ceramics did not prevent growth of cells.

To test how the cells grow on the scaffold itself, the team incubated cultured bone cells on its surface for different lengths of time. Cells attached to the surface within 30 minutes and over a number of days, they continued to grow and divide. After a week, cells covered the surface of the scaffold and almost filled the pores in the ceramic structure.

This compatibility with cell growth means that, along with the strength provided by the composite structure, the new artificial bone meets the requirements for an artificial graft more fully than current options.

Story Source:
The above story is reprinted from materials provided by ResearchSEA.

Tags: Bioengineering
Share14Tweet9Share2ShareShareShare2

Related Posts

Why is the first Turkish bioengineering promotion website, Biyomuhendislik.com, so important?

February 4, 2023

Robo-fish

September 19, 2016

Mice born from ‘tricked’ eggs

September 17, 2016

UCLA researchers use stem cells to grow 3-D lung-in-a-dish

September 16, 2016
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1237 shares
    Share 494 Tweet 309
  • New Study Reveals the Science Behind Exercise and Weight Loss

    104 shares
    Share 42 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    101 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    91 shares
    Share 36 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Nanomaterials Enhance In Vivo Ultrasound Luminescence Imaging

Unraveling Depression: Neuroimmune and Metabolic Stress Links

Personalized Access to Global Digital Health Technologies

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 65 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.