• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

African evidence support Younger Dryas Impact Hypothesis

Bioengineer by Bioengineer
October 2, 2019
in Chemistry
Reading Time: 4 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

First African evidence to support hypothesis of an asteroid impact that contributed to the extinction of large animals 12,800 years ago

IMAGE

Credit: Francis Thackeray/Wits University

A team of scientists from South Africa has discovered evidence partially supporting a hypothesis that Earth was struck by a meteorite or asteroid 12 800 years ago, leading to global consequences including climate change, and contributing to the extinction of many species of large animals at the time of an episode called the Younger Dryas.

The team, led by Professor Francis Thackeray of the Evolutionary Studies Institute at the University of the Witwatersrand in Johannesburg, South Africa, discovered evidence of a remarkable “platinum spike” at a site called Wonderkrater in the Limpopo Province, north of Pretoria in South Africa. Working with researcher Philip Pieterse from the University of Johannesburg and Professor Louis Scott of the University of the Free State, Thackeray discovered this evidence from a core drilled in a peat deposit, notably in a sample about 12 800 years old. This research was published in Palaeontologia Africana.

Noting that meteorites are rich in platinum, Thackeray said “Our finding at least partially supports the highly controversial Younger Dryas Impact Hypothesis (YDIH). We seriously need to explore the view that an asteroid impact somewhere on earth may have caused climate change on a global scale, and contributed to some extent to the process of extinctions of large animals at the end of the Pleistocene, after the last ice age.”

Many mammals became extinct in North America, South America and Europe at the time of the Younger Dryas. In South Africa a few extraordinary large animal species became extinct, not necessarily at exactly 12 800 years ago, but close to that period. These megafauna include a giant African buffalo, a large zebra, and a very big wildebeest.

Human populations may also have been indirectly affected at the time in question. In North America there is a dramatic termination of the stone tool technology of Clovis people. Remarkably, archaeologists in South Africa have detected an almost simultaneous termination of the Robberg stone artefact industry associated with people in some parts of the country, including the area around Boomplaas near the Cango Caves in the southern Cape, close to the town of Oudshoorn.

“Without necessarily arguing for a single causal factor on a global scale, we cautiously hint at the possibility that these technological changes, in North America and on the African subcontinent at about the same time, might have been associated indirectly with an asteroid impact with major global consequences,” says Thackeray. “We cannot be certain, but a cosmic impact could have affected humans as a result of local changes in environment and the availability of food resources, associated with sudden climate change.”

At Wonderkrater, the team has evidence from pollen to show that about 12 800 years ago there was temporary cooling, associated with the “Younger Dryas” drop in temperature that is well documented in the northern hemisphere, and now also in South Africa. According to some scientists, this cooling in widespread areas could at least potentially have been associated with the global dispersal of platinum-rich atmospheric dust.

A large crater 31 kilometres in diameter has been discovered in northern Greenland beneath the Hiawatha Glacier. “There is some evidence to support the view that it might possibly have been the very place where a large meteorite struck the planet earth 12 800 years ago,” says Thackeray. “If this was indeed the case, there must have been global consequences.”

Thackeray’s team believes their discovery of a platinum spike at about 12 800 years ago at Wonderkrater is just part of the strengthening view that an asteroid or cometary impact might have occurred at that time.

This is the first evidence in Africa for a platinum spike preceding climate change. Younger Dryas spikes in platinum have also been found in Greenland, Eurasia, North America, Mexico and recently also at Pilauco in Chile. Wonderkrater is the 30th site in the world for such evidence.

“Our evidence is entirely consistent with the Younger Dryas Impact Hypothesis” says Thackeray.

The discovery in South Africa is expected to be integrated with those made in other parts of the world, recognising that the source of the platinum at Wonderkrater could hypothetically be cosmic dust that was dispersed in the atmosphere after a meteorite impact in Greenland.

The probability of a large asteroid striking Earth in the future may seem to be low, but there are thousands of large rocks distributed primarily between Jupiter and Mars. One in particular, classified as Apophis 99942, is referred to as a “Potentially Hazardous Asteroid”. It is 340 meters wide and will come exceptionally close to the Earth in 10 years’ time.

“The closest encounter will take place precisely on Friday April 13, 2029,” says Thackeray. “The probability of the Apophis 99942 asteroid hitting us then is only one in 100 000, but the probability of an impact may be even higher at some time in the future, as it comes close to Earth every 10 years.”

###

The South African research has been supported by the National Research Foundation and the DST/NRF Centre of Excellence for the Palaeosciences.

Media Contact
Schalk Mouton
[email protected]

Tags: ArchaeologyClimate ChangeEvolutionGeology/SoilGeophysicsOld WorldPaleontologyTemperature-Dependent Phenomena
Share18Tweet11Share3ShareShareShare2

Related Posts

McGill Study Identifies Montreal Snow Dumps and Inactive Landfills as Significant Methane Emitters

McGill Study Identifies Montreal Snow Dumps and Inactive Landfills as Significant Methane Emitters

October 17, 2025
Recursive Enzymatic Network Enables Multitask Molecular Processing

Recursive Enzymatic Network Enables Multitask Molecular Processing

October 17, 2025

How Focus Sharpens Sound Processing: The Brain’s Path to Better Listening

October 17, 2025

Eliminating Uncertainty in Shock Wave Predictions Through Advanced Computational Modeling

October 17, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1264 shares
    Share 505 Tweet 316
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    297 shares
    Share 119 Tweet 74
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    126 shares
    Share 50 Tweet 32
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    103 shares
    Share 41 Tweet 26

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Nursing Students’ Metaphors: Envisioning AI’s Future Impact

ALS Modulator Signature Revealed in Blood Cells

Carotenoids Linked to Respiratory Infections in America

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 65 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.