• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, July 25, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Adventures in phase space: Unified map on plastic and elastic glasses

Bioengineer by Bioengineer
December 17, 2018
in Biology
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Osaka University-led researchers simulate the phase diagram of a simple glass, showing how its plasticity, elasticity, yielding and jamming depend on the annealing process

IMAGE

Credit: Osaka University


Osaka, Japan – Glasses are an enigma among solid phases. Like crystalline solids they are hard, but unlike crystals they are amorphous on the molecular scale. Because of this structural disorder, each piece of glass is technically out of equilibrium, and unique. As a result, its properties depend not only on its chemical ingredients, but on how it was cooled.

Their amorphousness makes it tricky to describe glasses with a general model. Now, however, a team led by Osaka University has used simulations to connect the annealing (cooling or compression) of a glass with its mechanical response to strain. In particular, their study – published in Science Advances – focused on two key metrics of solid behavior, elasticity and plasticity.

When deformed by shear strain, an “elastic” solid returns to its original shape after the strain is released. Plastics, in contrast, permanently retain their new shape. This contrast between “reversible” and “irreversible” changes has implications for how materials respond to mechanical forces – in the body, in technical applications, and even on the geological scale.

“We modeled dense assembly of colloids–a type of amorphous solid–made of hard spheres,” says study co-author Hajime Yoshino. “The spheres don’t represent real molecules, but they do show whether such dense glasses are elastic. We simulated how they responded to shear and normal strains. Our large supercomputers fully mapped out the strain phase-diagrams of glass formers for the first time, to explore their rheology.”

Each glass showed four basic trends. Under small strains they were perfectly elastic. At higher strains they became partially plastic, failing to recover the original state when the deformation was partly lifted. Eventually they face either of the two opposite fates at larger strains: total failure by fracturing (yielding) to release stress, or complete stop by jamming (becoming congested). The region between yielding and jamming on the phase diagram defined where the original glass remained stable.

“We can understand the responses as those of stable, partly stable and unstable glasses,” explains lead author Yuliang Jin. “Interestingly, the size of the solid region–and its stable sub-zone–depends on how well the glass was annealed. Better annealed glasses have larger chances of jamming under shear. Our work is the first to demonstrate that ultimate fate of a glass under shear strain can be either yielding or jamming.”

Condensed soft matter is found throughout technology and nature–for example, in foams, emulsions and biological tissues. Because such condensed soft matter, like glass, is amorphous, a deeper understanding of how to tailor the properties of glasses may have a wider impact on material design.

###

The article, “A stability-reversibility map unifies elasticity, plasticity, yielding, and jamming in hard sphere glasses,” was published in Science Advances at DOI: https://doi.org/10.1126/sciadv.aat6387.

About Osaka University

Osaka University was founded in 1931 as one of the seven imperial universities of Japan and now has expanded to one of Japan’s leading comprehensive universities. The University has now embarked on open research revolution from a position as Japan’s most innovative university and among the most innovative institutions in the world according to Reuters 2015 Top 100 Innovative Universities and the Nature Index Innovation 2017. The university’s ability to innovate from the stage of fundamental research through the creation of useful technology with economic impact stems from its broad disciplinary spectrum.

Website: https://resou.osaka-u.ac.jp/en/top

Media Contact
Saori Obayashi
[email protected]
81-661-055-886

Original Source

https://resou.osaka-u.ac.jp/en/research/2018/20181208_1

Related Journal Article

http://dx.doi.org/10.1126/sciadv.aat6387

Tags: Atomic/Molecular/Particle PhysicsBiomechanics/BiophysicsChemistry/Physics/Materials SciencesGeophysicsIndustrial Engineering/ChemistryMaterials
Share12Tweet8Share2ShareShareShare2

Related Posts

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

July 20, 2025
blank

Archaeal Ribosome Shows Unique Active Site, Hibernation Factor

July 17, 2025

Mobile Gene Regulator Balances Arabidopsis Shoot-Root Growth

July 16, 2025

Mobile Transcription Factor Drives Nitrogen Deficiency Response

July 16, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    62 shares
    Share 25 Tweet 16
  • AI Achieves Breakthrough in Drug Discovery by Tackling the True Complexity of Aging

    70 shares
    Share 28 Tweet 18
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    43 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Additive Manufacturing of Monolithic Gyroidal Solid Oxide Cells

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

Pathology Multiplexing Revolutionizes Disease Mapping

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.