• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 15, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

AD alloyed nanoantennas for temperature-feedback identification of viruses and explosives

Bioengineer by Bioengineer
April 1, 2019
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

All-dielectric nanoantennas remain chemically non-invasive, they cause no effect on the studied analytes and reactions.

IMAGE

Credit: FEFU press office

Scientists of Far Eastern Federal University (FEFU) in collaboration with colleagues from Far Eastern Branch of Russian Academy of Sciences (FEB RAS), ITMO University and Swinburne University of Technology (Australia) developed a method for efficient mass production of silicon-germanium fully alloyed nanoantennas. On their basis, optical biosensory platforms and next-generation chemical sensors for fast and accurate tracing of viruses, pollutions, explosives, etc. at low concentrations are expected to appear. Related paper was published in Nanoscale.

To fabricate all-dielectric (AD) optical nanoantennas, scientists proposed a facile technology based on a temperature-assisted dewetting of commercial silicon-on-insulator (SOI) substrates at 800°C in high vacuum. Such treatment of SOI substrate leads to the formation of silicon nanodrops, which can be used as optical nanoantennas, amplifying the signals from various adsorbed molecules. Scientists have shown that the deposition of Ge in the process of SOI dewetting allows producing alloyed nanoparticles with unique properties. Such nanoantennas allow to identify adsorbed molecules as well as to access and control the local temperature at high accuracy and resolution in the process of measurement.

“It’s very useful to know the local temperature because in the process of measurement both the nanoantennas and the adsorbed analyte molecules are exposed with intense laser radiation which causes their heating. At the same time, most organic molecules degrade at rather low temperatures around 130-170°C, i.e. in the process of measurement one can simply burn them up before getting a useful signal. Such useful temperature-feedback modality cannot be realized with plasmonic nanoantennas commonly used to design biosensors. All-dielectric nanoantennas provide a reliable way to achieve this feature as the measured characteristics spectrum of the analyte molecules already contains all information required to determine the local temperature of the “nanoantenna-molecule” system.” Said Aleksandr Kuchmizhak, a researcher in the FEFU Center for Virtual and Augmented reality.

“By controlling the concentration of germanium in the alloyed silicon nanoparticles, one can tailor their properties; in particular, control their resonant optical characteristics, as well as the light-to-heat conversion efficiency. This is very useful for studying of various chemical processes and reactions induced by laser radiation.” Reported Evgeny Mitsai, a researcher at Institute of Automation and Control Processes and Institute of Chemistry, FEB RAS.

The scientist emphasized that by using all-dielectric nanoantennas one can study in details the temperature-mediated effects in laser-induced chemical reactions at high temporal resolution. Moreover, all-dielectric nanoantennas remain chemically non-invasive, i.e. their presence — unlike the presence of the plasmonic-based nanoantennas — causes no effect on the studied analytes and reactions.

Until today, the mass production of all-dielectric nanoantennas was difficult. Commonly used electron-beam lithography was too expensive and time-consuming. The technology proposed by FEFU scientists in collaboration with their colleagues from the FEB RAS, ITMO University, universities of Australia and Tunisia, allows getting over this limitation.

###

FEFU run a priority research project “Materials” engaged a group of talented physicists, chemists, biologists, and materials scientists, most of which are young scientists under 35 years old. Among other things, researchers actively study novel promising nanomaterials and technologies for next-generation sensory systems as black silicon and laser-textured PTFE.

The study was supported by Russian Science Foundation (RSF), grant 18-79-10091

Media Contact
Alexander Zverev
[email protected]

Related Journal Article

http://dx.doi.org/10.1039/C9NR01837A

Tags: Chemistry/Physics/Materials SciencesElectromagneticsIndustrial Engineering/ChemistryMolecular PhysicsNanotechnology/MicromachinesOptics
Share12Tweet8Share2ShareShareShare2

Related Posts

Ocular Side Effects Associated with Semaglutide: New Insights

Ocular Side Effects Associated with Semaglutide: New Insights

August 15, 2025
blank

Quantum Gas Defies Warming: A Cool Breakthrough in Physics

August 15, 2025

FSU Chemists Pioneer Advanced X-Ray Material, Revolutionizing Thin Film Imaging

August 15, 2025

Deep Learning Model Accurately Predicts Ignition in Inertial Confinement Fusion Experiments

August 14, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    59 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

AFAR Secures Over $5.7 Million NIH Renewal Funding for Nathan Shock Centers Coordinating Center

Immunotherapy Prolongs Survival in Patients with Rare Skin Cancer

Multifocus Microscope Breaks New Ground in Rapid 3D Live Biological Imaging

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.