• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 26, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

A theory as clear as glass

Bioengineer by Bioengineer
December 11, 2020
in Science News
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Institute of Industrial Science, the University of Tokyo

Tokyo, Japan – Researchers from the Institute of Industrial Science at The University of Tokyo used molecular dynamics calculations to simulate the glass-forming ability of metallic mixtures. They show that even small changes in composition can strongly influence the likelihood that a material will assume a crystalline versus a glassy state upon cooling. This work may lead to a universal theory of glass formation and cheaper, more resilient, electroconductive glass.

If you have important guests coming over for dinner, you might set your table with expensive “crystal” glasses. To scientists, however, crystal and glass are actually two very different states that a liquid might assume when cooled. A crystal has a defined three-dimensional lattice structure that repeats indefinitely, while glass is an amorphous solid that lacks long-range ordering. Current theories of glass formation cannot accurately predict which metallic mixtures will “vitrify” to form a glass and which will crystallize. A better, more comprehensive understanding of glass formation would be a great help when designing new recipes for mechanically tough, electrically conductive materials.

Now, researchers at the University of Tokyo have used computer simulations of three prototypical metallic systems to study the process of glass formation. “We found that the ability for a multi-component system to form a crystal, as opposed to a glass, can be disrupted by slight modifications to the composition,” first author Yuan-Chao Hu says.

Stated simply, glass formation is the consequence of a material avoiding crystallization when cooled. This locks the atoms into a “frozen” state before they can organize themselves into their energy-minimizing pattern. The simulations showed that a critical factor determining the rate of crystallization was the liquid-crystal interface energy.

The researchers also found that changes in elemental composition can lead to local atomic orderings that frustrate the process of crystallization with arrangements incompatible with the crystal’s usual form. Specifically, these structures can prevent tiny crystals from acting as “seeds” that nucleate the growth of ordered regions in the sample. In contrast with previous explanations, the scientists determined that the chemical potential difference between the liquid and crystal phases has only a small effect on glass formation.

“This work represents a significant advancement in our understanding of the fundamental physical mechanism of vitrification,” senior author Hajime Tanaka says. “The results of this project may also help glass manufacturers design new multi-component systems that have certain desired properties, such as resilience, toughness and electroconductivity.”

###

The work is published in Science Advances as “Physical origin of glass formation from multi-component systems” (Sci. Adv. 2020; 6 : eabd2928).

About Institute of Industrial Science (IIS), the University of Tokyo

Institute of Industrial Science (IIS), the University of Tokyo is one of the largest university-attached research institutes in Japan.

More than 120 research laboratories, each headed by a faculty member, comprise IIS, with more than 1,000 members including approximately 300 staff and 700 students actively engaged in education and research. Our activities cover almost all the areas of engineering disciplines. Since its foundation in 1949, IIS has worked to bridge the huge gaps that exist between academic disciplines and real-world applications.

Media Contact
Hajime Tanaka
[email protected]

Original Source

https://www.iis.u-tokyo.ac.jp/en/news/3438/

Tags: Atomic/Molecular/Particle PhysicsChemistry/Physics/Materials SciencesGeophysicsIndustrial Engineering/ChemistryMaterialsMolecular PhysicsNanotechnology/Micromachines
Share13Tweet8Share2ShareShareShare2

Related Posts

Gender Diversity and Social Epidemiology in Adolescents

Gender Diversity and Social Epidemiology in Adolescents

November 26, 2025
blank

Measuring Microplastics in Human Blood: New Study

November 26, 2025

Revolutionizing Chinese Art Textbooks with Enhanced NMT

November 26, 2025

Optimizing Moxifloxacin Nanoparticles with Innovative Technique

November 26, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    203 shares
    Share 81 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    119 shares
    Share 48 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    94 shares
    Share 38 Tweet 24
  • Scientists Create Fast, Scalable In Planta Directed Evolution Platform

    100 shares
    Share 40 Tweet 25

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Gender Diversity and Social Epidemiology in Adolescents

Measuring Microplastics in Human Blood: New Study

Revolutionizing Chinese Art Textbooks with Enhanced NMT

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.