• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, July 25, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

A silver lining like no other

Bioengineer by Bioengineer
March 5, 2019
in Health
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Self-sterilizing microneedles revolutionizing vaccination and drug delivery

IMAGE

Credit: University of South Australia

Vaccinations are the world’s frontline defence against infectious diseases yet despite decades of interventions, unsafe injection practices continue to expose billions of people to serious infection and disease.

Now, new technology from the University of South Australia is revolutionising safe vaccination practices through antibacterial, silver-loaded dissolvable microneedle patches, which not only sterilise the injection site to inhibit the growth of bacteria, but also physically dissolve after administration.

Lead researcher, Professor Krasimir Vasilev says these first generation microneedles have the potential to transform the safe administration of transdermal vaccinations and drug delivery.

“Injections are one of the most common health care procedures used for vaccinations and curative care around the world,” Prof Vasilev says.

“But up to 40 per cent of injections are given with improperly sterilised syringes and needles, placing millions of people at risk of contracting a range of illnesses or diseases.

“Our silver-loaded microneedles have inherently potent antibacterial properties which inhibit the growth of pathogenic bacteria and reduce the chance of infection.”

The UniSA study tested the antibacterial efficacy of silver-loaded microneedles against bacteria associated with common skin infections – Golden staph, Staphylococcus epidermis, Escherichia coli and Pseudomonas aeruginosa – and found that the silver-loaded microneedle patches created a 24-hour bacteria-free zone around the patch administration site, a feature unique to the new technology.

The silver-loaded microneedles comprise an array of 15 x 15 needles each 700 micron in length, which pierce only the top layer of the skin without reaching the underlying nerves, making them 100 per cent painless.

The microneedles are made from a safe, biocompatible and highly water-soluble polymer that completely dissolve within one minute of application, leaving behind no sharp waste.

The World Health Organization says that using the same syringe or needle to give injections to more than one person is driving the spread of deadly infectious diseases worldwide, estimating that this may cause up to 1.7 million people to be infected with hepatitis B, 315,000 with hepatitis C, and as many as 33,800 with HIV each year.

Prof Vasilev says the dissolvable feature of the microneedles will significantly improve injection safety.

“Infection from unsafe injection practices occurs all over the world,” Prof Vasilev says, “so technologies that protect people from unnecessary infection are critical.

“The dissolvable feature of our silver-loaded microneedles ensures absolutely no risk of reuse, removing one of the greatest causes of infection.

“And by incorporating the antibacterial silver nano-particles into the dissolvable microneedles, we’ve created a very promising vehicle for safe vaccine and drug delivery around the world.”

This study was made available online in November 2018 ahead of final publication in print in January 2019.

###

Contact for interview: Professor Krasi Vasilev office +61 8 830 25697

email [email protected]

Media: Annabel Mansfield office +61 8 8302 0351 | mobile: +61 417 717 504

email: [email protected]

Media Contact
Annabel Mansfield
[email protected]

Original Source

http://www.unisa.edu.au/Media-Centre/Releases/2019/a-silver-lining-like-no-other-self-sterilising-microneedles-revolutionising–vaccination-and-drug-delivery/#.XHyfArhS_V8

Related Journal Article

http://dx.doi.org/10.1039/C8CC06035E

Tags: BiochemistryBiotechnologyDisease in the Developing WorldInfectious/Emerging DiseasesMedicine/HealthNanotechnology/MicromachinesPainPolymer ChemistryVaccines
Share12Tweet7Share2ShareShareShare1

Related Posts

Single-Cell Atlas Links Chemokines to Type 2 Diabetes

July 20, 2025
blank

AI Diagnoses Structural Heart Disease via ECG

July 17, 2025

Functional Regimes Shape Soil Microbiome Response

July 17, 2025

Stealth Adaptations in Large Ichthyosaur Flippers

July 17, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • AI Achieves Breakthrough in Drug Discovery by Tackling the True Complexity of Aging

    70 shares
    Share 28 Tweet 18
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    43 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Additive Manufacturing of Monolithic Gyroidal Solid Oxide Cells

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

Pathology Multiplexing Revolutionizes Disease Mapping

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.