• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

A scanning transmission X-ray microscope for analysis of chemical states of lithium

Bioengineer by Bioengineer
January 14, 2021
in Chemistry
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: NINS/IMS

Lithium-ion batteries (LIB) are widely used for daily products in our life, such as hybrid cars, cell phone, etc. but their charge/discharge process is not fully understood yet. To understand the process, behaviors of lithium ion, distribution and chemical composition and state, should be revealed. A research group in Institute for Molecular Science noticed on a scanning transmission X-ray microscope (STXM, shown in Fig. 1) as a powerful technique to perform X-ray absorption spectroscopy (XAS) with high spatial resolution. By using absorption edge of a specific element, 2-dimensional chemical state of a sample can be obtained. To analyze lithium by the STXM, the Li K absorption edge (55 eV) in low energy region makes it difficult to measure the XAS due to lack of a proper optical element and tremendous higher-order harmonics from a monochromator which contaminate XAS. Therefore, a low-pass filtering zone plate (LPFZP), a focusing optical element of the STXM, was developed to overcome these issues. The LPFZP uses silicon of 200 nm thick as a substrate of the zone plate and the substrate works as a low-pass filter above 100 eV by using Si L2,3 edges. The hybrid optics of the LPFZP can suppress the higher-harmonics without installing an additional optical component into the STXM. As a result, the STXM with the LPFZP suppresses higher-order harmonics down to 0.1% of an original intensity and enables to measure XAS spectra of the Li K-edge. Then the spatial resolution was estimated as 72 nm.

A thin section sample of a test electrode of the LIB was analyzed. The sample is made of Li2CO3 by a focusing ion-beam process. The STXM image at 70 eV and the Li K-edge XAS spectra are shown in Fig. 2(a) and 2(b), respectively. The XAS spectra are successfully obtained from the regions indicated by circles in Fig. 2(a).

To understand the behavior of lithium in the LIB is necessary to improve its performance. Then, the STXM with the LPFZP will be helpful to analyze that with high spatial resolution.

###

Media Contact
Takuji Ohigashi
[email protected]

Original Source

https://www.ims.ac.jp/en/

Related Journal Article

http://dx.doi.org/10.1063/5.0020956

Tags: Chemistry/Physics/Materials SciencesEnergy/Fuel (non-petroleum)Industrial Engineering/ChemistryMaterialsNanotechnology/MicromachinesOptics
Share12Tweet8Share2ShareShareShare2

Related Posts

Turbulent Flow in Heavily Polluted Tijuana River Elevates Regional Air Quality Risks

Turbulent Flow in Heavily Polluted Tijuana River Elevates Regional Air Quality Risks

August 28, 2025
Unlocking the Potential of In-Between Quantum States to Revolutionize Future Technologies

Unlocking the Potential of In-Between Quantum States to Revolutionize Future Technologies

August 28, 2025

When Ocean Waves Reach the Shoreline

August 28, 2025

Innovative Algorithm Paves the Way for Enhanced Noise Reduction in Quantum Devices

August 28, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    150 shares
    Share 60 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Maximizing Liver Graft Use from Circulatory Death Donors

Exploring Cellular Diversity Throughout Fruit Fly Metamorphosis

Bison Restoration: Revitalizing the Yellowstone Ecosystem Through Freedom to Roam

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.