• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, January 9, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

A new rare metals alloy can change shape in the magnetic field

Bioengineer by Bioengineer
July 8, 2019
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Scientists developed multifunctional metal alloys that emit and absorb heat at the same time and change their size and volume under the influence of a magnetic field

IMAGE

Credit: Peter the Great St.Petersburg Polytechnic University

Scientists from Peter the Great St.Petersburg Polytechnic University (SPbPU) with their colleagues developed multifunctional metal alloys that emit and absorb heat at the same time and change their size and volume under the influence of a magnetic field. This effect is caused by changes in the structure of the substance. The alloys may be used in medicine and industry. The results of the study were published in the Key Engineering Materials journal. The project was supported by the Russian Foundation For Basic Research and carried out as a part of the state assignments of the Federal Agency for Scientific Organizations and the Ministry of Education and Science of the Russian Federation.

When magnetized, certain bodies change their volume and linear dimensions. This phenomenon is called magnetostriction. The shape changes depend both on the properties of the magnetic field and on the substance structure. The biggest changes usually occur in strongly magnetic materials such as nickel, iron, and cobalt oxide alloys. However, the magnetic properties of rare metals require additional studies and are of great interest today.

A team of scientists from Peter the Great St. Petersburg Polytechnic University calculated the combination of components in an alloy that would allow for heat absorption and emission and shape and size changes within a wide variety of temperatures including those close to human body temperature. In such an alloy terbium, dysprosium, gadolinium, and cobalt should be combined as 0.2:0.8-x:x:2, and aluminium should be added to them to reach the ratio of 0.2:0.8-x:x:0.9:0.1 (where x is a variable). The alloys were manufactured in the Institute of Electrical Engineering at Leibniz University Hannover.

The obtained material may be used to develop magnetostrictive transducers. They serve as sensors, filters, and resonators that transform the magnetic field into mechanical oscillations and vice versa. This is an important function for various devices, such as material integrity controllers that help find air bubbles within constructions. If such bubbles are not identified and removed, they may cause cracks and damage. Moreover, a transducer can serve as a basis for developing sensitive vibration gauges used to register earthquake shocks, as well as a source and a receiver of sound waves for underwater works.

A team of specialists from the Institute of Metallurgy and Material Science of the Russian Academy of Sciences studied the effect of the magnetic field on the alloy. The surface of the substance was probed with a thin needle able to detect every indent or mount. The system worked a lot like a phonograph, but the data was transformed not in music, but in an image. The scientists demonstrated that the surface of the alloy is covered in stripes and that their layout changes under the influence of the magnetic field. Thus, they were able to see the restructuring of the metal that explains the magnetostriction effect.

“Transducers based on our alloys are going to be more durable and long-lasting than the existing analogs and will work in a wide range of magnetic fields. Moreover, the alloys may be used in medicine as they can change their shape under the influence of magnetic fields that are safe for human health. For example, one can develop arterial stents that would flow in the bloodstream in a compact form and then unfold in a given place. This is possible because the operating temperature range of our materials is close to human body temperature,” said Alexey Filimonov, the head of the Department of Physical Electronics at Peter the Great St. Petersburg Polytechnic University (SPbPU).

###

Media Contact
Raisa Bestugina
[email protected]

Related Journal Article

http://dx.doi.org/10.4028/www.scientific.net/KEM.806.136

Tags: Atomic PhysicsChemistry/Physics/Materials SciencesElectrical Engineering/ElectronicsElectromagneticsIndustrial Engineering/ChemistryMaterialsMolecular PhysicsNanotechnology/MicromachinesTelecommunications
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Advancing Alkene Chemistry: Homologative Difunctionalization Breakthrough

January 8, 2026
Biocompatible Ligand Enables Safe In-Cell Protein Arylation

Biocompatible Ligand Enables Safe In-Cell Protein Arylation

January 8, 2026

Monovalent Pseudo-Natural Products Boost IDO1 Degradation

January 7, 2026

Catalytic Enantioselective [1,2]-Wittig Rearrangement Breakthrough

January 7, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    154 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    144 shares
    Share 58 Tweet 36
  • Impact of Vegan Diet and Resistance Exercise on Muscle Volume

    46 shares
    Share 18 Tweet 12
  • SARS-CoV-2 Subvariants Affect Outcomes in Elderly Hip Fractures

    45 shares
    Share 18 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Amino Acid Metabolism: New Hope for Cholangiocarcinoma

Unraveling the Assembly and Evolution of Bacterial Motors

Hepatokine Fibrinogen-Like Protein 1 Fuels Kidney Fibrosis

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.