• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, September 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

A new facial analysis method detects genetic syndromes with high precision and specificity

Bioengineer by Bioengineer
November 13, 2019
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Developed by Araceli Morales, Gemma Piella and Federico Sukno, members of the Department of Information and Communication Technologies, together with researchers from the University of Washington

IMAGE

Credit: © Springer Nature Switzerland AG 2019.


Each year, over a million children are born with a genetic disease. Although about half of genetic syndromes present facial dysmorphology, abnormal facial features are often subtle at birth and their identification by paediatricians can prove challenging. Delays and errors in diagnosis have a significant impact on mortality and morbidity associated with genetic syndromes. By way of example, the average accuracy in the detection of one of the most studied genetic syndromes, Down syndrome, by a trained paediatrician is as low as 64% in the US, and so methods for the early detection of genetic syndromes become very important.

Today, facial analysis of children from photographs is a technique that allows early identification of genetic syndromes. However, images may suffer problems of calibration and illumination. Although 3D photography overcomes some of these problems, 3D scanners to quantify craniofacial dysmorphology in children are expensive and often not available at all health centres. A recent study presents a new method to optimize facial analysis that enables reconstructing the face in 3D from 2D photographs.

Araceli Morales, Gemma Piella and Federico Sukno, members of the SIMBIOsys research group and of the Cognitive Media Technologies of the Department of Information and Communication Technologies (DTIC) at UPF, together with researchers from the University of Washington (USA) are the authors of this work published on 7 October in the online edition of Lecture Notes in Computer Science. The article describes the new optimization method to perform 3D facial reconstructions of the shape of children’s faces from uncalibrated 2D photographs using a new statistical model.

First, for each 2D photo, the new method estimates the camera pose using a statistical model and a set of 2D facial landmarks. Secondly, the method calculates the camera pose and the parameters of the statistical model by minimizing the distance between the projection of the estimated 3D face in the image plane of each camera and the observed 2D face geometry.

“Using reconstructed 3D faces, we automatically extract a set of 3D geometric and appearance descriptors and we use them to train a classifier to identify facial dysmorphology associated with genetic syndromes”, explains Araceli Morales, first author of the article who is working on this research for her doctoral thesis which is being supervised by Federico Sukno.

The face reconstruction method on 3D photographs was evaluated in 54 subjects (age range 0-3 years), and “our classifier identified genetic syndromes in reconstructed 3D faces from 2D photographs with 100% sensitivity and a specificity of 92.11%”, the authors explain in their article.

###

Media Contact
UPF
[email protected]

Original Source

https://www.upf.edu/web/e-noticies/home/-/asset_publisher/wEpPxsVRD6Vt/content/id/229741747/maximized#.XcvrHTJKjBI

Related Journal Article

http://dx.doi.org/10.1007/978-3-030-32689-0_19

Tags: BiochemistryBiologyBiomedical/Environmental/Chemical EngineeringBiotechnologyChemistry/Physics/Materials SciencesMedicine/HealthneurobiologyNeurochemistry
Share12Tweet8Share2ShareShareShare2

Related Posts

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

September 11, 2025
Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

September 11, 2025

Scientists reinvigorate pinhole camera technology for advanced next-generation infrared imaging

September 11, 2025

BeAble Capital Invests in UJI Spin-Off Molecular Sustainable Solutions to Advance Disinfection and Sterilization Technologies

September 11, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    153 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    65 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Exploring Water Absorption in Footballs: Leather vs. Synthetic

Grape and Olive Waste Transformed Into Asphalt Antioxidants

Enhancing Co-Composting: Quicklime Boosts Nutrient Recovery

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.