• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

A demonstration of substituent effects in anti-aromatic compounds

Bioengineer by Bioengineer
July 27, 2023
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Circularly conjugated compounds with 4n+2 pi-electrons are known as aromatic compounds. They are generally stable and are therefore found in our surroundings. On the other hand, anti-aromatic compounds with 4n pi-electrons have been conventionally considered unstable, and the creation of stable anti-aromatic compounds has been one of the challenging issues in organic chemistry. Several studies on the synthesis, isolation, and characterization of stable and clearly anti-aromatic compounds have been reported in recent years. In general, anti-aromatic compounds are considered to be more susceptible to substituents than aromatic compounds because of their narrower HOMO-LUMO gap. However, there has been no systematic study of such substituent effects in anti-aromatic compounds.
   This research group has been conducting studies on the synthesis and properties of hexapyrrolohexaazacoronene (HPHAC), a nitrogen-containing polycyclic aromatic compound consisting of pyrrole. Furthermore, homoHPHAC, a pi-extended analog of HPHAC, was reported to show global anti-aromaticity as a monocation and global aromaticity as a trication. In this study, a new synthetic method for homoHPHACs using Friedel-Crafts-type intramolecular condensation reactions was developed, and a series of compounds with electron-donating to electron-accepting substituents were synthesized. The effects of substituents on structural, optical, redox, and antiaromatic (aromatic) properties were demonstrated. In conjunction with computational chemistry, it was shown that both anti-aromatic (monocation) and aromatic (tricationic) properties were the strongest in compounds with electron-accepting substituents.
   Various approaches to the use of organic compounds as electronic materials are being investigated from the viewpoints of reducing environmental impact and providing versatility in functional control. The attempt to control electronic properties by introducing substituents into anti-aromatic compounds is expected to provide new design guidelines for molecular materials.

Demonstration of Substituent Effects in Anti-aromatic Compounds

Credit: Masayoshi Takase(Ehime University)

Circularly conjugated compounds with 4n+2 pi-electrons are known as aromatic compounds. They are generally stable and are therefore found in our surroundings. On the other hand, anti-aromatic compounds with 4n pi-electrons have been conventionally considered unstable, and the creation of stable anti-aromatic compounds has been one of the challenging issues in organic chemistry. Several studies on the synthesis, isolation, and characterization of stable and clearly anti-aromatic compounds have been reported in recent years. In general, anti-aromatic compounds are considered to be more susceptible to substituents than aromatic compounds because of their narrower HOMO-LUMO gap. However, there has been no systematic study of such substituent effects in anti-aromatic compounds.
   This research group has been conducting studies on the synthesis and properties of hexapyrrolohexaazacoronene (HPHAC), a nitrogen-containing polycyclic aromatic compound consisting of pyrrole. Furthermore, homoHPHAC, a pi-extended analog of HPHAC, was reported to show global anti-aromaticity as a monocation and global aromaticity as a trication. In this study, a new synthetic method for homoHPHACs using Friedel-Crafts-type intramolecular condensation reactions was developed, and a series of compounds with electron-donating to electron-accepting substituents were synthesized. The effects of substituents on structural, optical, redox, and antiaromatic (aromatic) properties were demonstrated. In conjunction with computational chemistry, it was shown that both anti-aromatic (monocation) and aromatic (tricationic) properties were the strongest in compounds with electron-accepting substituents.
   Various approaches to the use of organic compounds as electronic materials are being investigated from the viewpoints of reducing environmental impact and providing versatility in functional control. The attempt to control electronic properties by introducing substituents into anti-aromatic compounds is expected to provide new design guidelines for molecular materials.



Journal

Chemical Science

DOI

10.1039/D2SC07037E

Article Publication Date

6-Jun-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Exploring Dark Matter Through Exoplanet Research

August 21, 2025
The Evolution of Metalenses: From Single Devices to Integrated Arrays

The Evolution of Metalenses: From Single Devices to Integrated Arrays

August 21, 2025

Zigzag Graphene Nanoribbons with Porphyrin Edges

August 21, 2025

Bending Light: UNamur and Stanford Unite to Revolutionize Photonic Devices

August 21, 2025

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

How Cells Manage Stress: New Study Uncovers the Role of Waste Disposal Systems in Overinflated Balloons

Whole Exome Sequencing Links FANCM to ER-Negative Breast Cancer

Adipocyte IL6 and Cancer CXCL1 Drive STAT3/NF-κB Crosstalk

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.