• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 1, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

A bio-inspired addition to concrete stops the damage caused by freezing and thawing

Bioengineer by Bioengineer
May 27, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Living Materials Laboratory, University of Colorado Boulder

Concrete is one of the most abundant and durable building materials used in modern-day infrastructures, but it has a weakness–ice–which can cause it to crumble and spall. Now, inspired by organisms that survive in sub-zero environments, researchers in Colorado are introducing polymer molecules with anti-freezing abilities into concrete. The method, which tests if the new concrete can stop the damage caused by freezing and thawing, appears in the journal Cell Reports Physical Science on May 27.

Concrete is a porous material with capillary pores that allow water to permeate into the material. For places that experience large temperature swings, concrete roads and buildings go through “freeze-thaw cycles.” The water freezes and expands inside of the material, building up pressure as the ice crystals grow, eventually popping the surface of the concrete off. The polyethylene glycol-graft-polyvinyl alcohol (PEG-PVA) molecules that the researchers have identified appear to keep the ice crystals small and prevent them from coalescing into larger crystals.

“We’re particularly excited because this represents a departure away from more than 70 years of conventional concrete technology,” says senior author Wil Srubar, who heads the Living Materials Laboratory at the University of Colorado Boulder. “In our view, it’s a quantum leap in the right direction and opens the door for brand new admixture technologies.”

For over 70 years, the primary way to mitigate freeze-thaw damage was to put in tiny air bubbles that act as pressure release valves inside of the concrete, known as air-entraining admixtures. But putting tiny air bubbles into the concrete not only lowers the strength of the material but also makes it more porous, acting like a superhighway for more water and other harmful substances, like salts, to enter. Instead of tackling the symptoms of ice expansions, the team decided to target the source: ice crystal growth.

Found in organisms that survive in sub-zero environments, anti-freeze proteins bind to ice crystals to inhibit their growth that would otherwise be fatal to the organisms. Inspired by the protein, the team introduced polymer molecules that mimicked the protein’s properties to the concrete mix. The molecules effectively reduced the size of ice crystals by 90 percent. The new concrete mix also withstood 300 freeze-thaw cycles and maintained its strength.

Although the new concrete passed industry-standard tests, there are still questions about the true long-term resilience of the material in a real-world application and its economic viability. The next step for the team is to optimize their method by identifying new molecules that are more cost-effective and testing the compatibility of the molecule with different recipes of concrete. “Making concrete is a lot like baking a cake,” says Srubar, hoping that concrete recipes can benefit from the new additive.

“For the next 30 years, the world will be building a New York City every 35 days, which is astounding,” says Srubar. “What that means is that we’re going to be building a lot of buildings and roads, and we’re going to be using a lot of concrete. Because it has significant impacts on the environment, the concrete that we do make really does have to be as sustainable as possible and as durable as it can be.”

###

This work was supported by the US National Science Foundation and the National Highway’s Cooperative Research Program.

Cell Reports Physical Science, Frazier et al.: “Inhibiting Freeze-Thaw Damage in Cement Paste and Concrete by Mimicking Nature’s Antifreeze” https://www.cell.com/cell-reports-physical-science/fulltext/S2666-3864(20)30054-0

Cell Reports Physical Science (@CellRepPhysSci), published by Cell Press, is a new broad-scope, open access journal that publishes cutting-edge research across the spectrum of the physical sciences, including chemistry, physics, materials science, energy science, engineering, and related interdisciplinary work. Visit: https://www.cell.com/cell-reports-physical-science/home. To receive Cell Press media alerts, please contact [email protected].

Media Contact
Carly Britton
[email protected]

Related Journal Article

http://dx.doi.org/10.1016/j.xcrp.2020.100060

Tags: Biomedical/Environmental/Chemical EngineeringBiotechnologyChemistry/Physics/Materials SciencesIndustrial Engineering/ChemistryMaterialsPolymer ChemistryResearch/Development
Share12Tweet8Share2ShareShareShare2

Related Posts

Revolutionary Organic Molecule Poised to Transform Solar Energy Harvesting

Revolutionary Organic Molecule Poised to Transform Solar Energy Harvesting

October 1, 2025

Innovative Biochar Technology Offers Breakthrough in Soil Remediation and Crop Protection

October 1, 2025

CATNIP Tool Expands Access to Sustainable Chemistry Through Data-Driven Innovation

October 1, 2025

Mastering the “Troublesome” Oxygen

October 1, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    90 shares
    Share 36 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    74 shares
    Share 30 Tweet 19
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    64 shares
    Share 26 Tweet 16
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    63 shares
    Share 25 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Initiative Aims to Halt Decline of Iconic Butterfly Species

Validating Self-Supervised AI for ICF Coding

Linking Nurses’ Emotional Skills to Care Competence

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.