• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, September 15, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Immunology

Targeting kinetoplastid and apicomplexan thymidylate biosynthesis as antiprotozoal strategy

Bioengineer by Bioengineer
December 26, 2018
in Immunology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

This article by Dr. Dolores Gonzalez Pacanowska et al. is published in Current Medicinal Chemistry, 2018

Kinetoplastid and apicomplexan parasites include protozoans which are responsible for human diseases, and cause a serious impact on human health and the socioeconomic growth of developing countries. Chemotherapy is the main option to control these pathogenic organisms. The organisms’ nuclear metabolism is considered a promising area for the provision of antimicrobial therapeutic targets.

The viability of parasitic protozoa is severely diminished by imparing thymidylate (dTMP) biosynthesis. The absence of enzymatic activities which are specifically involved in the formation of dTMP (e.g. dUTPase, thymidylate synthase, dihydrofolate reductase or thymidine kinase) results in decreased de-oxythymidine triphosphate (dTTP) levels and the so-called thymineless death.

In this process, the ratio of deoxyuridine triphosphate (dUTP) as compared to dTTP in the cellular nucleotide pool has a crucial role. A high dUTP/dTTP ratio leads to uracil misincorporation into DNA, which then leads to the activation of DNA repair pathways, DNA fragmentation and eventually cell death.

For the identification and development of drugs, the essential character of dTMP synthesis has stimulated interest. These agents specifically block the biochemical steps involved in thymine nucleotide formation.

The review covers available literature related to drug discovery of agents targeting thymidylate biosynthesis in kinetoplastid (genera Trypanosoma and Leishmania) and apicomplexan (Plasmodium spp and Toxoplasma gondii) protozoans.The most relevant findings concerning novel inhibitory molecules with anti-parasitic activity against these human pathogens are presented in the review.

###

The article is available from the following link: http://www.eurekaselect.com/165707

Media Contact
Faizan ul Haq
[email protected]
http://dx.doi.org/10.2174/0929867325666180926154329

Tags: BiochemistrycancerCell BiologyCritical Care/Emergency MedicineDisease in the Developing WorldImmunology/Allergies/AsthmaInfectious/Emerging DiseasesMedicine/HealthPharmaceutical ChemistryPharmaceutical Science
Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

UMass Amherst grad student awarded fellowship for food allergy research

July 23, 2021
IMAGE

Less-sensitive COVID-19 tests may still achieve optimal results if enough people tested

July 22, 2021

Public trust in CDC, FDA, and Fauci holds steady, survey shows

July 20, 2021

USC study shows male-female differences in immune cell function

July 19, 2021
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    154 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    66 shares
    Share 26 Tweet 17
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Boosting AMPA Signaling Enhances Spinal Cord Repair

CPAP Use Linked to Lower Pneumonia Risk in OSA

UT San Antonio School of Public Health: Advancing Community-Centered Science

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.