• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, July 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Micropores let oxygen and nutrients inside biofabricated tissues

Bioengineer by Bioengineer
December 20, 2018
in Health
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Ozbolat laboratory, Penn State


Micropores in fabricated tissues such as bone and cartilage allow nutrient and oxygen diffusion into the core, and this novel approach may eventually allow lab-grown tissue to contain blood vessels, according to a team of Penn State researchers.

“One of the problems with fabrication of tissues is that we can’t make them large in size,” said Ibrahim T. Ozbolat, associate professor of engineering science and mechanics. “Cells die if nutrients and oxygen can’t get inside.”

Inside cells also do not differentiate if the chemical cocktail that triggers stem cells to differentiate does not reach them. A porous structure allows both nutrients and other fluids to circulate.

The researchers are trying a novel approach and creating tissue building blocks with micropores. They consider this an alternative to vascularization — growing blood vessels in the tissue — and call the outcome porous tissue strands.

The researchers are starting with stem cells derived from human fat and mixing them with sodium alginate porogens. Derived from seaweed, sodium alginate can be printed into tiny particles that, when dissolved, leave behind tiny holes — pores — in the fabric of the tissue. The team uses the mixture to 3D print strands of undifferentiated tissue. They can then combine the strands to form patches of tissue.

When the researchers expose the tissue to the chemical cocktail, it turns the stem cells into specific cells, in this case bone or cartilage. Because of the pores, the fluid can flow to all of the stem cells.

The researchers report in a recent issue of Biofabrication that the strands maintain 25 percent porosity and have pore connectivity of 85 percent for at least three weeks.

By 3D printing strands next to and atop each other as shown in their previous work, the strands self-assemble to form patches of tissue.

“These patches can be implanted in bone or cartilage, depending on which cells they are,” said Ozbolat. “They can be used for osteoarthritis, patches for plastic surgery such as the cartilage in the nasal septum, knee restoration and other bone or cartilage defects.”

In some ways, cartilage is easier than bone because in the human body, cartilage does not have blood vessels running through it. However, some bone is naturally porous, and so porosity is valuable in replacing or repairing that bone. While currently only tiny patches can be made, these patches are easier to fabricate than growing artificial tissue on scaffolding.

The researchers are considering applying the same methods to muscle, fat and various other tissues.

###

Other researchers at Penn State include Yang Wu, postdoctoral fellow in engineering science and mechanics; Monika Hospodiuk, graduate student in agricultural and biological engineering; Hemanth Gudapati, graduate student in engineering science and mechanics; Thomas Neuberger, director, High Field Magnetic Resonance Imaging Facility; Srinivas Koduru, research technologist in the Department of Surgery; and Dino J. Ravnic, assistant professor of surgery, Penn State Cancer Institute. Also on the project was visiting scholar Weijie Peng, department of pharmacology, Nanchang University, China.

The National Science Foundation, the China Scholarship Council and the Jiangxi Association for Science and Technology supported this work.

Media Contact
A’ndrea Elyse Messer
[email protected]
814-865-9481

Related Journal Article

http://dx.doi.org/10.1088/1758-5090/aaec22

Tags: Chemistry/Physics/Materials SciencesMaterialsOrthopedic Medicine
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Epicardial Fat: Protector or Threat to Heart Health?

July 26, 2025
blank

Glymphatic Asymmetry Linked to Parkinson’s Onset Side

July 26, 2025

Theta Stimulation Boosts Conflict Resolution in Parkinson’s

July 26, 2025

Faecal Transplants Show Safety in Parkinson’s Pilot

July 26, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    52 shares
    Share 21 Tweet 13
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    42 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    45 shares
    Share 18 Tweet 11
  • Engineered Cellular Communication Enhances CAR-T Therapy Effectiveness Against Glioblastoma

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Advanced Pressure-Velocity Patch Enhances Flight Detection

Durable, Flexible Electrochemical Transistors via Electropolymerized PEDOT

Challenges and Opportunities in High-Filled Polymer Manufacturing

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.