• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Thursday, September 21, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Micropores let oxygen and nutrients inside biofabricated tissues

Bioengineer by Bioengineer
December 20, 2018
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Ozbolat laboratory, Penn State


Micropores in fabricated tissues such as bone and cartilage allow nutrient and oxygen diffusion into the core, and this novel approach may eventually allow lab-grown tissue to contain blood vessels, according to a team of Penn State researchers.

“One of the problems with fabrication of tissues is that we can’t make them large in size,” said Ibrahim T. Ozbolat, associate professor of engineering science and mechanics. “Cells die if nutrients and oxygen can’t get inside.”

Inside cells also do not differentiate if the chemical cocktail that triggers stem cells to differentiate does not reach them. A porous structure allows both nutrients and other fluids to circulate.

The researchers are trying a novel approach and creating tissue building blocks with micropores. They consider this an alternative to vascularization — growing blood vessels in the tissue — and call the outcome porous tissue strands.

The researchers are starting with stem cells derived from human fat and mixing them with sodium alginate porogens. Derived from seaweed, sodium alginate can be printed into tiny particles that, when dissolved, leave behind tiny holes — pores — in the fabric of the tissue. The team uses the mixture to 3D print strands of undifferentiated tissue. They can then combine the strands to form patches of tissue.

When the researchers expose the tissue to the chemical cocktail, it turns the stem cells into specific cells, in this case bone or cartilage. Because of the pores, the fluid can flow to all of the stem cells.

The researchers report in a recent issue of Biofabrication that the strands maintain 25 percent porosity and have pore connectivity of 85 percent for at least three weeks.

By 3D printing strands next to and atop each other as shown in their previous work, the strands self-assemble to form patches of tissue.

“These patches can be implanted in bone or cartilage, depending on which cells they are,” said Ozbolat. “They can be used for osteoarthritis, patches for plastic surgery such as the cartilage in the nasal septum, knee restoration and other bone or cartilage defects.”

In some ways, cartilage is easier than bone because in the human body, cartilage does not have blood vessels running through it. However, some bone is naturally porous, and so porosity is valuable in replacing or repairing that bone. While currently only tiny patches can be made, these patches are easier to fabricate than growing artificial tissue on scaffolding.

The researchers are considering applying the same methods to muscle, fat and various other tissues.

###

Other researchers at Penn State include Yang Wu, postdoctoral fellow in engineering science and mechanics; Monika Hospodiuk, graduate student in agricultural and biological engineering; Hemanth Gudapati, graduate student in engineering science and mechanics; Thomas Neuberger, director, High Field Magnetic Resonance Imaging Facility; Srinivas Koduru, research technologist in the Department of Surgery; and Dino J. Ravnic, assistant professor of surgery, Penn State Cancer Institute. Also on the project was visiting scholar Weijie Peng, department of pharmacology, Nanchang University, China.

The National Science Foundation, the China Scholarship Council and the Jiangxi Association for Science and Technology supported this work.

Media Contact
A’ndrea Elyse Messer
[email protected]
814-865-9481

Related Journal Article

http://dx.doi.org/10.1088/1758-5090/aaec22

Tags: Chemistry/Physics/Materials SciencesMaterialsOrthopedic Medicine
Share12Tweet8Share2ShareShareShare2

Related Posts

Molecular desorption from a microbubble under ultrasound irradiation.

Unveiling the science of ultrasound-driven microbubble desorption

September 21, 2023
icare logo

Texas Biomed launches new International Center for the Advancement of Research & Education

September 20, 2023

Only 1% of US kids who are obese in elementary school transition to a healthy weight within two years, although 1 in 4 overweight children progress to a healthy weight range

September 20, 2023

NIH awards $3.1 million to study human mitochondrial disorders

September 20, 2023
Please login to join discussion

POPULAR NEWS

  • blank

    Microbe Computers

    58 shares
    Share 23 Tweet 15
  • University of South Florida scientist: Barnacles may help reveal location of lost Malaysia Airlines flight MH370

    46 shares
    Share 18 Tweet 12
  • Lithuanian invention at the forefront of solar technology breakthrough

    41 shares
    Share 16 Tweet 10
  • A pioneering study from Politecnico di Milano sheds light on one of the still poorly understood aspects of cancer

    34 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

SBQuantum to test quantum magnetometer in space – designed to map Earth’s magnetic field

UW team’s shape-changing smart speaker lets users mute different areas of a room

New study finds that sewage release is worse for rivers than agriculture

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 57 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In