• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 7, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Scientists discovered mechanisms behind neonatal diabetes

Bioengineer by Bioengineer
December 17, 2018
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Otonkoski Lab / University of Helsinki

Insulin is secreted from the beta cells which are located in the pancreas, and it is crucial for the maintenance of normal blood sugar levels. Deficiency of insulin leads to diabetes, characterized by elevated blood sugar. Diabetes most commonly presents in childhood as Type 1 diabetes and in adults as Type 2 diabetes.

Sometimes diabetes is diagnosed already in very small babies, during the first six months of life. In these cases, mutations in the gene encoding insulin are often found.

These mutations are only found in one copy of the gene; that means that half of the produced insulin is normal, which should be enough to secure normal blood sugar. However, this is not the case: insulin secretion stops totally after a few months. It is believed that this is caused by a toxic effect of the mutant insulin inside the cell, but the exact mechanisms are poorly understood.

Mutant insulin is known to cause a chronic stress reaction in the beta cell, and it has been thought that this leads to the death of the cell. It is important to understand the detailed consequences of beta-cell stress, because this may help to develop drugs for the prevention of both rare and common forms of diabetes.

“We now had the chance to test this with real patient-derived cells”, tells Professor Timo Otonkoski from the University of Helsinki.

Researchers created a human disease model using stem cells from people carrying insulin gene mutations; then they corrected cells using a gene editing technique called CRISPR. The mutant and corrected stem cells were then induced to turn into insulin-secreting beta cells and the researchers followed the function of the cells after transplanting them in mice.

“The main finding of the study was that these cells do not die from the chronic stress, but their growth and development is disturbed. These effects are mediated through processes that could potentially be targeted by drugs”, Dr. Diego Balboa says.

“In this study, we describe mechanisms linking chronic cellular stress to the poor development of the insulin-producing cells. A strongly reduced number of beta-cells will cause diabetes immediately, but even a milder defect will increase the risk of diabetes later in life. Understanding the molecular mechanisms of these processes may help in devising ways to preserve the mass and function of beta cells”, Otonkoski states.

###

Media Contact
Timo Otonkoski
[email protected]
358-504-486-392

Original Source

https://www.helsinki.fi/en/news/health-news/scientists-discovered-mechanisms-behind-neonatal-diabetes

Related Journal Article

http://dx.doi.org/10.7554/eLife.38519

Tags: BiologyCell BiologyDevelopmental/Reproductive BiologyDiabetesGeneticsMedicine/HealthMetabolism/Metabolic Diseases
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

F. Uniseptata Pigment Boosts Microbial Fuel Cell Power

August 7, 2025
Blue LED Boosts Fenugreek Extract Against Murine Trichinosis

Blue LED Boosts Fenugreek Extract Against Murine Trichinosis

August 7, 2025

Natural Plant Extracts Combat Inflammation, Protect Bone in Periodontitis

August 7, 2025

Optimizing Hydrogel Cultivation for Chlorella vulgaris Growth

August 7, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Neuropsychiatric Risks Linked to COVID-19 Revealed

    76 shares
    Share 30 Tweet 19
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    46 shares
    Share 18 Tweet 12
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    44 shares
    Share 18 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Multi-Omics Uncovers T-Cell Exhaustion and Galectin-9 Target

Twist-Driven Beam Steering in Photonic Crystals

F. Uniseptata Pigment Boosts Microbial Fuel Cell Power

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.