• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 24, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

Interplay between MicroRNAs and targeted genes in cellular homeostasis of adult zebrafish

Bioengineer by Bioengineer
December 10, 2018
in Cancer
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The article by Dr. Gary Hardiman et al. is published in Current Genomics, Volume 19, Issue 7, 2018

IMAGE

Credit: Dr. Gary Hardiman et al., Bentham Science Publishers


Cellular pathways represent the intricate metabolic connections between the plethora of signaling pathways, and energetic-sensors in organs. To maintain energy balance in body organs these metabolic pathways must act uniformly at any given point in time. This is to ensure organ functionality under specific metabolic changes. A new class of non-coding RNAs, MicroRNA, has recently been discovered which has proven the process of metabolic homeostasis to be more complex than it was previously thought.

The objective of the research is to understand damages resulted by toxins to the liver and the intestine as well as its relation to MiRNome. Baseline Characterization in healthy animal tissue undergoing cellular homeostasis is required for initiating transcriptome process. For the experiment, researchers dissected wildtype fish (Zebrafish) and isolated their liver and gut; from these organs, small RNA was extracted. These organs were chosen because the liver is the main site for detoxification and gut is the primary site for contaminant exposure. From the RNA samples, mRNA and miRNA libraries were constructed and put under high throughout sequencing. Following sequencing, differential analysis was performed comparing liver mRNA contents with those in the gut. An “miRNA matrix” containing miRNA sequence and mRNA sequence was then constructed.

The results from the analysis have provided new information regarding microRNA function in these tissues. The miRNome and transcriptome of both liver and gut tissues were characterized and the related miRNAs were identified. Studying the miRNA matrix revealed two types of miRNA in liver and gut. miRNAs unique to each organ regulate fundamental cellular process important for both organs while those common to both tissues regulate biological processed specific to either the liver or the gut.

The article is open access and can be obtained from the website: http://www.eurekaselect.com/161817

###

Media Contact
Faizan ul Haq
[email protected]

Related Journal Article

http://dx.doi.org/10.2174/1389202919666180503124522

News source: https://scienmag.com/

Tags: BiochemistryBioinformaticsBiotechnologycancerCell BiologyGene TherapyGenesGeneticsMedicine/HealthMolecular Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

Key Nervous System Components Found to Regulate Gastrointestinal Tumor Growth

October 24, 2025

Silencing SOX2OT Lowers Lung Cancer Cell Aggressiveness

October 24, 2025

New Alliance Launches Clinical Trials of Targeted Therapies for Rare Adrenal Cancers

October 23, 2025

Illuminating Life: Rice Scientists Create Glowing Sensors to Monitor Cellular Changes in Real Time

October 23, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1278 shares
    Share 510 Tweet 319
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    308 shares
    Share 123 Tweet 77
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    182 shares
    Share 73 Tweet 46
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    133 shares
    Share 53 Tweet 33

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Night Eating Syndrome vs. Mindful Eating: Food Addiction Insights

Developing Brazil’s Health Evidence Framework: A Study

Novel Algorithm Enhances Disease Classification Using Extracellular Vesicles

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 66 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.