• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, December 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Bioengineering

New tissue engineering breakthrough encourages nerve repair

Bioengineer by Bioengineer
April 22, 2014
in Bioengineering, Tissue Engineering
Reading Time: 2 mins read
1
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A new combination of tissue engineering techniques could reduce the need for nerve grafts, according to new research by The Open University. Regeneration of nerves is challenging when the damaged area is extensive, and surgeons currently have to take a nerve graft from elsewhere in the body, leaving a second site of damage. Nerve grafts contain aligned tissue structures and Schwann cells that support and guide neuron growth through the damaged area, encouraging function to be restored. The research, published in Biomaterials, reported a way to manufacture artificial nerve tissue with the potential to be used as an alternative to nerve grafts.

nerve_repair_open_university

Pieces of Engineered Neural Tissue (EngNT) are formed by controlling natural Schwann cell behaviour in a three-dimensional collagen gel so that the cells elongate and align, then a stabilisation process removes excess fluid to leave robust artificial tissues. These living biomaterials contain aligned Schwann cells in an aligned collagen environment, recreating key features of normal nerve tissue.

Incorrect orientation of regenerating nerve cells can lead to delays in repair, scarring and poor restoration of nerve function. Much research has taken place into how support cells (Schwann cells) can be combined with materials to guide nerve regeneration. The new technology from The Open University avoids the use of synthetic materials by building neural tissue from collagen, a protein that is abundant in normal nerve tissue. Building the artificial tissue from natural proteins and directing the cellular alignment using normal cell-material interactions means the EngNT can integrate effectively at the repair site.

Dr James Phillips, Lecturer in Health Sciences at The Open University, said: “We previously reported how self-alignment of Schwann cells could be achieved by using a tethered collagen hydrogel, which exploited cells’ natural ability to orientate in the appropriate direction by using their internal contraction forces. Our current research shows that cell-alignment in the hydrogel can be stabilised using plastic compression. The compression removes fluid from the gels, leaving a strong and stable aligned structure that has many features in common with nerve tissue.”

The team incorporated Schwann cells within the aligned material to form artificial neural tissue that could potentially be used in peripheral nerve repair. The technique could be applied to other regenerative medicine scenarios, where a stable artificial tissue containing aligned cellular architecture would be of benefit.

Story Source:

The above story is reprinted from materials The Open University.

Tags: Tissue Engineering
Share12Tweet8Share2ShareShareShare2

Related Posts

Why is the first Turkish bioengineering promotion website, Biyomuhendislik.com, so important?

February 4, 2023

Robo-fish

September 19, 2016

Mice born from ‘tricked’ eggs

September 17, 2016

UCLA researchers use stem cells to grow 3-D lung-in-a-dish

September 16, 2016
Please login to join discussion

POPULAR NEWS

  • Nurses’ Views on Online Learning: Effects on Performance

    Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    71 shares
    Share 28 Tweet 18
  • Unraveling Levofloxacin’s Impact on Brain Function

    54 shares
    Share 22 Tweet 14
  • Exploring Audiology Accessibility in Johannesburg, South Africa

    51 shares
    Share 20 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Axonal Eif5a Hypusination Boosts Translation, Eases FUS-ALS

CD155 Drives Lung Adenocarcinoma via Glycolytic Reprogramming

Income Inequities in China’s Elderly Care Services

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.