• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 15, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Bioengineering

UH researchers are pioneering tools for heart regeneration

Bioengineer by Bioengineer
August 9, 2016
in Bioengineering
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE
Credit: Courtesy of Yu Liu

HOUSTON, Aug. 8, 2016 – Cardiovascular diseases are the leading cause of death in the U.S. With one in every four deaths occurring each year, the five-year survival rate after a heart attack is worse than most cancers. A big part of the problem is the inability of the human heart to effectively repair itself after injury. A team of University of Houston researchers is trying to change that.

Physicians and biologists are developing strategies to help regenerate heart muscle cell formation. Among them are developmental biologists in UH’s College of Natural Sciences and Mathematics, whose work has added novel, powerful tools to achieve this. Their findings are published in the Aug. 8 early edition of the Proceedings of the National Academy of Sciences (PNAS), one of the world’s most-cited multidisciplinary scientific journals.

The human heart is an organ that doesn’t regenerate, and the number of heart muscle cells drops as a person ages. Cells lost during injuries, such as from a heart attack, are gradually replaced by connective tissue, a process called fibrosis. This leads to the loss of pump function, which is the underlying reason cardiovascular diseases are as deadly as cancers.

“We have uncovered new regulators of heart formation,” said assistant professor of biochemistry Yu Liu, one of the lead authors of the study. “Compared to most others, these new regulators, which are a small RNA species called microRNAs, act early in the multistep heart formation process. They are easier to deliver into human bodies, and thus have a shorter path to clinical use.”

In trying to find a solution, Liu and his colleagues focused on learning how a heart is formed in an embryo. Specifically, they are curious as to whether the new regulators they uncovered will convert an abundant cell type, called human fibroblasts, into heart muscles. Robert Schwartz, Cullen Distinguished Professor of biochemistry and also an author on this study, is a pioneer in making heart muscle cells from fibroblasts, which is now a widely adopted strategy.

“We were the first in converting human fibroblasts into cardiomyocytes,” Schwartz said. “I expect these microRNA regulators to be potent, either acting alone or in combination with the existing agents we have.”

In a project with NASA’s Center for the Advancement of Science in Space, Schwartz is exploring how the unique environment in space can assist in the creation of heart muscle cells out of fibroblasts. The microRNAs they uncovered will add substantially to his toolbox in this effort.

Once considered genetic junk, microRNAs have emerged as a major player in gene regulation. Using mouse genetic tools, Liu and his team were able to track the process of heart muscle cell formation in a dish. Their work involved several screening steps. Most importantly, they first identified approximately 140 microRNAs in the earliest ancestor cells of the heart. Next, they screened for the ones that function in driving heart muscle cell formation, and the miR-322/503 cluster emerged as the top finding in both screenings and laid the basis for their work.

Supported by multiple grants from the American Heart Association, Liu hopes to be able to use these microRNAs to treat human heart attack and subsequent heart failure within the next five to 10 years. Beyond this manuscript, they have developed several mouse models in house and hope to make more exciting discoveries down the road.

###

Additional UH collaborators on this study included Preethi Gunaratne, associate professor of biochemistry and a genome sequencing pioneer in the field of microRNA research, and Xiaopeng Shen, a postdoctoral fellow in Liu’s lab and first author of the article. Part of the research included in the paper is Shen’s thesis work, which he completed as a graduate student in biochemistry at UH.

Twitter handles: @PNASNews @UHouston @UH_News @American_Heart
Facebook pages: PNAS, UH College of Natural Sciences & Mathematics (NSM), University of Houston, American Heart Association
Hashtags: #heartdisease

About the University of Houston

The University of Houston is a Carnegie-designated Tier One public research university recognized by The Princeton Review as one of the nation’s best colleges for undergraduate education. UH serves the globally competitive Houston and Gulf Coast Region by providing world-class faculty, experiential learning and strategic industry partnerships. Located in the nation’s fourth-largest city, UH serves more than 42,700 students in the most ethnically and culturally diverse region in the country. For more information about UH, visit the university’s newsroom at http://www.uh.edu/news-events/.

To receive UH science news via email, sign up for UH-SciNews at http://www.uh.edu/news-events/mailing-lists/sciencelistserv/index.php.

Media Contact

Lisa Merkl
[email protected]
713-743-8192
@UH_News

http://www.uh.edu/news-events

The post UH researchers are pioneering tools for heart regeneration appeared first on Scienmag.

Share29Tweet8Share2ShareShareShare2

Related Posts

blank

Why is the first Turkish bioengineering promotion website, Biyomuhendislik.com, so important?

February 4, 2023
blank

Robo-fish

September 19, 2016

Mice born from ‘tricked’ eggs

September 17, 2016

UCLA researchers use stem cells to grow 3-D lung-in-a-dish

September 16, 2016
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    58 shares
    Share 23 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Immune System’s Role in Clearing Senescent Cells

FSU Chemists Pioneer Advanced X-Ray Material, Revolutionizing Thin Film Imaging

Texas A&M Researchers Leverage AI to Identify Critical Power Outage Hotspots Across America

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.