• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, January 2, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

Study may lead to better breast cancer drugs

Bioengineer by Bioengineer
August 9, 2016
in Cancer
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Biomedical scientists have revealed the inner workings of a group of proteins that help to switch critical genes on and off during blood-cell production, in a finding that could lead to the development of new and improved cancer drugs.

One of the proteins involved is linked to breast cancer, which is the most common cancer for women and kills more than half a million women around the world each year. Existing breast cancer treatments do not target this protein specifically.

Researcher Dr Daniel Ryan from The Australian National University (ANU) said the study could help explain how existing breast-cancer drugs work inside human cells.

“There are treatments for breast cancer which are in use today that are effective but we still don’t know how they work,” said Dr Ryan, from the John Curtin School of Medical Research.

“This research shines a light on an important set of proteins that could be targeted by these drugs and superior treatments yet to be developed.”

The research is part of an international collaboration – involving ANU, the University of Sydney and The University of Pennsylvania in the US – that seeks to understand the mechanisms for gene regulation, particularly in relation to diseases such as cancer and blood disorders.

“By creating better targeted treatments for breast cancer and other serious diseases, we’ll have better outcomes for patients because we’ll be able to reduce toxicity and the risk of drug resistance,” Dr Ryan said.

The research team described how a special group of proteins form into an enzyme that turns genes on and off to produce essential elements in the body, such as blood cells and stem cells.

“This enzyme is like a car and the proteins are the different parts that are used to make it. By knowing how these parts fit together, we can understand how the car works and hence we’re in a better to position to fix it when something goes wrong,” Dr Ryan said.

“We still need to pull the enzyme apart and explore the interactions between the various proteins involved to really grapple with this complex molecular machinery.

“Our ongoing research will help to advance our knowledge of how genes are regulated – a phenomenon that is not only vital to normal functions in the body, but also a key factor in many diseases.”

###

The study was supported by funding from the Australian Research Council and the National Health and Medical Research Council of Australia.

It was published in the Journal of Biological Chemistry: http://www.jbc.org/content/291/30/15853.short

Media Contact

Dr. Daniel Ryan
[email protected]
61-261-252-549
@ANUmedia

http://www.anu.edu.au/media

The post Study may lead to better breast cancer drugs appeared first on Scienmag.

Share22Tweet8Share2ShareShareShare2

Related Posts

Derazantinib Boosts Gemcitabine by Blocking MUC5AC

December 30, 2025

FOCUS Study Reveals Insights on Melphalan for Uveal Melanoma

December 29, 2025

Black Grape Anthocyanins Boost 5-FU Cancer Therapy

December 29, 2025

Girdin Silencing Boosts Mebendazole’s Ovarian Cancer Fight

December 29, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    113 shares
    Share 45 Tweet 28
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    71 shares
    Share 28 Tweet 18
  • Exploring Audiology Accessibility in Johannesburg, South Africa

    52 shares
    Share 21 Tweet 13
  • SARS-CoV-2 Subvariants Affect Outcomes in Elderly Hip Fractures

    44 shares
    Share 18 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Reprogrammable Nonlinear Optics with Ferroelectric Liquid Crystals

Advancements in Droplet Microfluidics for Biomaterials

Topological Vertical Cavity Lasers from Soft Matter

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.