• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 7, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Bioengineering

Protective effect of genetically modified cord blood on spinal cord injury in rats

Bioengineer by Bioengineer
April 23, 2016
in Bioengineering
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Transplantation of genetically modified cells carrying a transgene has a greater stimulating effect on the regeneration of post-traumatic central nervous system.

During spinal cord injury, the extensive area adjacent to the epicenter of the injury gets involved in the pathological process. As such, in order to achieve complete therapeutic action, the therapeutic gene must be delivered not only to the epicenter of traumatic injury but also to the surrounding areas distant from the epicenter of injury.

Two transgenes such as vascular endothelial growth factor (VEGF) and glial cell-derived neurotrophic factor (GDNF) proved to be powerful factors in the maintenance of viability of a number of cell different populations in the spinal cord, including the motor neurons.

VEGF stimulates neurogenesis and axonal growth as well as the rapid reproduction of astrocytes, neural stem, and Schwann cells. GDNF reduces apoptosis and tissue degeneration, supports expression of neurofilament protein, calcitonin gene-related peptide (CGRP) and growth associated protein 43.

For this study, researchers of Kazan Federal University and Kazan State Medical University chose human umbilical cord blood mononuclear cells (UCB-MCs), easy to produce and safe, with low immunogenicity and the potential to increase neuroregeneration, transduced with these two genes VEGF and GDNF.

“Considering the action of VEGF and GDNF through different receptors and pathways, we hypothesized that the simultaneous delivery of these two therapeutic genes would promote synergistic neuroprotective effects.

Thus, using a rat contusion spinal cord injury model we examined the efficacy of the construct on tissue sparing, glial scar severity, the extent of axonal regeneration, recovery of motor function, and analyzed the expression of the recombinant genes VEGF and GNDF in vitro and in vivo” comments one of the authors Yana Mukhamedshina.

The results obtained show that the adenoviral vectors encoding VEGF and GDNF, used to transduce UCB-MCs, were shown to be an effective and stable in these cells following transplantation.

The construct managed to increase tissue sparing and numbers of spared/regenerated axons, reduce glial scar formation and promote behavioral recovery when transplanted immediately after a rat contusion spinal cord injury. Researchers conclude that genetically modified human umbilical cord blood cells are a promising strategy for enhancing posttraumatic spinal cord regeneration.

###

The study was supported by grants 15-04-07527 (A.A. Rizvanov) and 14-04-31246 (Y.O.Mukhamedshina) from Russian Foundation for Basic Research. Y.O. Mukhamedshina was supported by a Presidential Grant for government support of young scientists (PhD) from the Russian Federation (MK-4020.2015.7). This work was performed in accordance with Program of Competitive Growth of

Kazan Federal University and a subsidy allocated to Kazan Federal University for the state assignment in the sphere of scientific activities. Some of the experiments were conducted using equipment at the Interdisciplinary Center for Collective Use of Kazan Federal University supported by Ministry of Education of Russia (ID RFMEFI59414X0003), Interdisciplinary Center for Analytical Microscopy, and Pharmaceutical Research and Education Center, Kazan (Volga Region) Federal University, Kazan, Russia.

Media Contact

Yevgeniya Litvinova
[email protected]
7-843-233-7345
@KazanUni

http://kpfu.ru/eng

The post Protective effect of genetically modified cord blood on spinal cord injury in rats appeared first on Scienmag.

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Why is the first Turkish bioengineering promotion website, Biyomuhendislik.com, so important?

February 4, 2023
blank

Robo-fish

September 19, 2016

Mice born from ‘tricked’ eggs

September 17, 2016

UCLA researchers use stem cells to grow 3-D lung-in-a-dish

September 16, 2016
Please login to join discussion

POPULAR NEWS

  • blank

    Neuropsychiatric Risks Linked to COVID-19 Revealed

    76 shares
    Share 30 Tweet 19
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    48 shares
    Share 19 Tweet 12
  • Predicting Colorectal Cancer Using Lifestyle Factors

    46 shares
    Share 18 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

SERENA-6: Advancing Precision Cancer Medicine with ctDNA

Phosphorylated α-Synuclein in Fluids Misleading for Synucleinopathy

Genetic Traits of Enterocytozoon bieneusi in Hebei Cattle

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.