• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, September 29, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Bioengineering

Mutations prevent programmed cell death

Bioengineer by Bioengineer
December 18, 2014
in Bioengineering, Cancer
Reading Time: 2 mins read
2
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Programmed cell death is a mechanism that causes defective and potentially harmful cells to destroy themselves. It serves a number of purposes in the body, including the prevention of malignant tumor growth. Now, researchers at Technische Universität München (TUM) have discovered a previously unknown mechanism for regulating programmed cell death. They have also shown that patients with lymphoma often carry mutations in this signal pathway.

Mutations prevent programmed cell death

Fluorescence microscopy image showing the ubiquitin ligase FBXO25 (green) and the “life-preserving” protein (red) in a cancer cell that is currently undergoing programmed cell death. The yellow signal indicates instances where both proteins are at the same location. (Picture: F. Bassermann / TUM)

A team of scientists headed by Dr. Florian Bassermann at the III. Medizinische Klinik, TUM Klinikum rechts der Isar, has been investigating mantle cell lymphoma, a subgroup of non-Hodgkin’s lymphoma, which, despite new therapies, has poor patient survival rates. “Programmed cell death no longer functions in many lymphoma cells. This causes them to multiply uncontrollably. We urgently need to find out what’s going wrong in these cells in order to find new treatment therapies,” explains Bassermann.

The scientists started analyzing samples of human mantle cell lymphoma in a bid to find errors in the DNA. They discovered a region that is mutated in almost 30 percent of patients. The scientists found that this region plays a key role in producing one particular enzyme, the ubiquitin ligase FBXO25. “We already knew that ubiquitin ligases are involved in breaking down proteins in cells. Now, however, we can show just how it contributes to the development of lymphoma,” explains Bassermann.

Survival strategy of cancer cells

During the course of numerous experiments, the scientists were able to decode a new signal path that triggers programmed cell death. Before a cell can start destroying itself, one particular protein that keeps healthy cells alive has to be removed. The researchers discovered that the ubiquitin ligase FBXO25 marks this protein with a signal molecule which triggers the disposal process.

“If there is a defect in the ubiquitin ligase, this mechanism no longer functions. The tumor cells in question do not destroy themselves and start growing unchecked,” continues Bassermann. The scientists also showed that cells with mutated FBXO25 displayed a much poorer response to chemotherapies, leaving the tumors in a much more stable condition. In a further finding, the researchers discovered other mutations in the cancer cells under investigation. In some cases, the very protein that keeps the cell alive was defective, carrying a mutation that made it resistant to destruction.

New therapies targeting ubiquitin ligase

Once this new signal path had been discovered, the scientists started working on a new therapy approach. They treated the cancer cells in such a way that they were able – once again – to create a functioning variant of the ubiquitin ligase. Instead of multiplying uncontrollably, the cells began destroying themselves again.

“We need to zero in on the exact defect in a tumor cell in order to adapt therapies more closely to individual types of tumors – this is particularly relevant to the field of personalized medicine. Our findings show that this signal path for mantle cell lymphoma could offer a promising approach for new therapies,” concludes Bassermann.

Story Source:

The above story is based on materials provided by Technischen Universität München.

Share12Tweet8Share2ShareShareShare2

Related Posts

Radiopharmaceutical Combined with Stereotactic Radiation Slows Progression of Oligometastatic Prostate Cancer

September 28, 2025

Low-Dose Radiation Therapy Provides Significant Relief for Painful Knee Osteoarthritis

September 28, 2025

ASTRO: Innovative Therapy Slows Progression of Recurrent Prostate Cancer

September 28, 2025

Groundbreaking Genomic Test Forecasts Hormone Therapy Benefits in Recurrent Prostate Cancer Treatment

September 28, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    85 shares
    Share 34 Tweet 21
  • Physicists Develop Visible Time Crystal for the First Time

    73 shares
    Share 29 Tweet 18
  • Scientists Discover and Synthesize Active Compound in Magic Mushrooms Again

    56 shares
    Share 22 Tweet 14
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Boosting Caregiver Support for Musculoskeletal Patients: Study

Genomic Study Uncovers Resilience of Coral-Killing Sponge

Closing the Prevention Gap: Funding and Research Shifts

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.