• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, July 26, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Bioengineering

Bioengineered Follicles Grow Hair On Bald Mice

Bioengineer by Bioengineer
October 31, 2013
in Bioengineering
Reading Time: 1 min read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The method devised by Professor Tsuji’s team involves reconstructing hair follicle germs from adult epithelial stem cells and cultured dermal papilla cells (dermal papilla are nipple-like projections at the base of hairs) and implanting these germs within or between skin layers.

Bioengineered Follicles Grow Hair On Bald Mice

To recreate the desired hair densities – normally about 120 hair shafts per square centimeter (0.15 square inch) or 60-100 hair shafts per square centimeter following a conventional hair transplantation method – 28 bioengineered follicle germs were transplanted onto a circular patch of cervical skin measuring 1 cm (0.39 in) in diameter. The resulting hair density of 124 hair shafts per square centimeter (plus or minus 17 shafts) turned out to be satisfactory, but there was more good news.

Far more importantly, the implanted follicle germs developed all the proper structures and formed correct connections with the surrounding host tissues, including epidermis, arrector pili muscle and nerve fibers. Also, the stem and progenitor cells along with their niches were recreated in the bioengineered follicles, making a continuous hair-growth cycle possible.

The method has been shown to work with all types of hair follicles, regardless of function, structure and color (depending on the type of the origin follicle). In fact, some features of the hair shaft, such as pigmentation, may be controlled – fancy a new permanent hair color?

Although more research is still necessary (such as further study of stem cell niches and optimizing the way origin follicles are to be sourced for clinical applications), the study constitutes another milestone on the way to next generation regenerative therapies.

Story source:

The above story is reprinted from materials provided by Gizmag.

Share18Tweet11Share3ShareShareShare2

Related Posts

blank

Why is the first Turkish bioengineering promotion website, Biyomuhendislik.com, so important?

February 4, 2023
blank

Robo-fish

September 19, 2016

Mice born from ‘tricked’ eggs

September 17, 2016

UCLA researchers use stem cells to grow 3-D lung-in-a-dish

September 16, 2016
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    48 shares
    Share 19 Tweet 12
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    42 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    45 shares
    Share 18 Tweet 11
  • New Measurements Elevate Hubble Tension to a Critical Crisis

    43 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Challenges and Opportunities in High-Filled Polymer Manufacturing

Epicardial Fat: Protector or Threat to Heart Health?

Renewable Energy Powers Arctic Food Sustainability

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.