• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, January 29, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Reviewing pressure effects on iron-based high-temperature superconductors

Bioengineer by Bioengineer
July 12, 2021
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Iron-based superconductors: a route to room-temperature superconductivity

IMAGE

Credit: FLEET

The discovery of iron-based superconductors with a relatively high transition temperature Tc in 2008 opened a new chapter in the development of high-temperature superconductivity.

The following decade saw a ‘research boom’ in superconductivity, with remarkable achievements in the theory, experiments and applications of iron-based superconductors, and in our understanding of the fundamental mechanism of superconductivity.

A UOW paper published last month reviews progress on high-pressure studies on properties of iron-based superconductor (ISBC) families.

FLEET PhD student Lina Sang (University of Wollongong) was first author on the Materials Today Physics review paper, investigating effects on the superconductivity, flux pinning, and vortex dynamics of ISBC materials, including:

  • pressure-induced superconductivity

  • raising transition temperature Tc

  • pressure-induced elimination/re-emergence of superconductivity

  • effects of phase separation on superconductivity

  • increasing critical current density

  • significantly suppressing vortex creep

  • reducing flux bundle size.

The review spotlights use of pressure as a versatile method for exploring new materials and gaining insight into the physical mechanisms of high-temperature superconductors.

SUPERCONDUCTORS: A BACKGROUND

In a superconductor, an electrical current can flow without any energy loss to resistance.

Iron-based superconductors are a type of ‘high temperature’ (Type II or unconventional) superconductor in that they have a transition temperature (Tc) much higher than a few degrees Kelvin above absolute zero.

The driving force behind such Type II superconductors has remained elusive since their discovery in the 1980s. Unlike ‘conventional’ superconductors, it is clear they cannot be directly understood from the BCS (Bardeen, Cooper, and Schrieffer) electron-phonon coupling theory.

In successive discoveries, the transition temperature Tc has been driven steadily higher.

“The ultimate goal of the research of superconductivity is finding superconductors with a superconducting transition temperature (Tc) at room temperature,” says Prof Xiaolin Wang, the node leader and theme leader of FLEET (also at the University of Wollongong) and Dr Sang’s PhD supervisor.

“Pressure can significantly enhance the Tc for the Fe-based superconductors. And recently, superconductivity was observed near room temperature in hydrogen alloyed compounds,” explains Prof Wang, who is Director of the Institute for Superconducting and Electronic Materials at the University of Wollongong.

###

THE STUDY

Experimental equipment: The diamond anvil cell (left) and hydrostatic pressure cell (right) can be used to establish the effect of pressure on superconducting material.

“Pressure effects on iron-based superconductor families: Superconductivity, flux pinning and vortex dynamics” was published in Materials Today Physics in May 2021 (DOI 10.1016/j.mtphys.2021.100414)

This work was support from the Australian Research Council through ARC Centre of Excellence in FLEET.

Media Contact
Errol Hunt
[email protected]

Original Source

http://www.fleet.org.au/blog/reviewing-pressure-effects-on-iron-based-high-temperature-superconductors/

Related Journal Article

http://dx.doi.org/10.1016/j.mtphys.2021.100414

Tags: Chemistry/Physics/Materials SciencesElectrical Engineering/ElectronicsElectromagneticsMaterialsSuperconductors/Semiconductors
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Wavelength-Controlled Rotation in Light-Powered Molecular Motor

January 28, 2026
blank

Dual-Atom Catalyst Enhances Low-Temperature Propane Combustion

January 26, 2026

New Route to Strychnos Alkaloids via Thiophene Cycloadditions

January 23, 2026

Lithium Metal Powers Electrochemical PFAS Reduction Breakthrough

January 20, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    157 shares
    Share 63 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    149 shares
    Share 60 Tweet 37
  • Robotic Ureteral Reconstruction: A Novel Approach

    80 shares
    Share 32 Tweet 20
  • Digital Privacy: Health Data Control in Incarceration

    62 shares
    Share 25 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Prethermalization via Random Multipolar Driving on 78 Qubits

3D Micro-Trench Imaging via Fourier Ptychographic Interferometry

Population Sequencing Reveals EBV DNA Persistence

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 72 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.