• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Surprising spider hair discovery may inspire stronger adhesives

Bioengineer by Bioengineer
September 6, 2025
in Biology
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Engineers impressed by the functional great diversity of hairs on spider legs

Just how do spiders walk straight up — and even upside-down across — so many different types of surfaces? Answering this question could open up new opportunities for creating powerful, yet reversible, bioinspired adhesives. Scientists have been working to better understand spider feet for the past several decades. Now, a new study in Frontiers in Mechanical Engineering is the first to show that the characteristics of the hair-like structures that form the adhesive feet of one species — the wandering spider Cupiennius salei — are more variable than previously thought.

“When we started the experiments, we expected to find a specific angle of best adhesion and similar adhesive properties for all of the individual attachment hairs,” says the group leader of the study, Dr Clemens Schaber of the University of Kiel in Germany. “But surprisingly, the adhesion forces largely differed between the individual hairs, e.g. one hair adhered best at a low angle with the substrate while the other one performed best close to perpendicular.”

The feet of this species of spider are made up of close to 2,400 tiny hairs or ‘setae’ (one hundredth of one millimeter thick). Schaber, and his colleagues Bastian Poerschke and Stanislav Gorb, collected a sample of these hairs and then measured how well they stuck to a range of rough and smooth surfaces, including glass. They also looked at how well the hairs performed at various contact angles.

Different types of hair work together

Unexpectedly, each hair showed unique adhesive properties. When the team looked at the hairs under a powerful microscope, they also found that each one showed clearly different — and previously unrecognized — structural arrangements. The team believes that this variety may be key to how spiders can climb so many surface types.

This current work studied only a small number of the thousands of hairs on each foot, and it’s beyond the scope of existing resources to consider studying them all. But the team expects that not all of the hairs are unique, and that it might be possible to find clusters or repeating patterns instead.

Bioinspired applications possible

“Although it is still very difficult to fabricate nanostructures like those of the spider–and especially to achieve the stability and reliability of the natural materials — our findings can further optimize existing models for reversible and residue-free artificial adhesives,” says Schaber. “The principle of different shapes and alignments of adhesive contacts as found in the spider attachment system can improve the attachment ability of bioinspired materials to a broad range of substrates with different properties.”

###

Media Contact
Mischa Dijkstra
[email protected]

Related Journal Article

http://dx.doi.org/10.3389/fmech.2021.702297

Tags: BiologyBiomechanics/BiophysicsChemistry/Physics/Materials SciencesDermatologyEcology/EnvironmentEvolutionMaterials
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Museum Genomic Research Reveals Pathogens Not Responsible for Franklin’s Bumble Bee Population Decline

October 20, 2025
blank

Study Reveals Physical Activity Boosts Total Daily Energy Expenditure

October 20, 2025

Striking a Chord: This News Headline for Science Magazine

October 20, 2025

Neighborhood Disadvantage’s Impact on IBS: A Gender Study

October 20, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1268 shares
    Share 506 Tweet 317
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    301 shares
    Share 120 Tweet 75
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    129 shares
    Share 52 Tweet 32
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    112 shares
    Share 45 Tweet 28

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Linking HPV, EBV, Polyomaviruses to Thyroid Tumors

Research Confirms: Stimulating the Senses Soothes the Mind

Global Increase in Obesity-Linked Cancers Among Both Younger and Older Adults

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 65 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.