• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Microscopic fossils record ancient climate conditions

Bioengineer by Bioengineer
May 24, 2021
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Courtney Wagner/University of Utah

Fifty-six million years ago, as the Earth’s climate warmed by five to eight degrees C, new land mammals evolved, tropical forests expanded, giant insects and reptiles appeared and the chemistry of the ocean changed. Through it all, bacteria in the ocean in what is now New Jersey kept a record of the changes in their environment through forming tiny magnetic particles. Now, those particles and their record are all that’s left of these microorganisms. Thanks to new research tools, that record is finally being read.

In research published in the journal Paleoceanography and Paleoclimatology, researchers including University of Utah doctoral student Courtney Wagner and associate professor Peter Lippert report the climate clues that can be found by analyzing the magnetic fossil particles, or magnetofossils.

“We interpret the relative abundances of these different populations of magnetofossils based on shape and size, which are a function of bacteria species, to encode environmental changes that are not as apparent in other fossil data sets or geochemical proxies,” Lippert says.

Using their FORC method (which stands for first-order reversal curves, a way of magnetically measuring and statistically describing the magnetic signatures in a sample of rock or sediment) they teased out three different subsets of magnetofossils from ancient coastal marine sediments.

“Each of the magnetofossil populations tells us something a little different about the environment,” Wagner says. One consists of “giant needle-shaped” magnetofossils, associated with increased iron and an expansion of a gradient between oxygenated and deoxygenated seawater. Another contains “equant” magnetofossils, which may record more stable, long-term conditions in the ocean and the last contains “elongated” magnetofossils, which may indicate seasonal conditions.

The results are important because they allow researchers to track the chemistry of the ocean throughout a global warming event similar to what the Earth is currently experiencing. For example, the results seem to show that the New Jersey coast rapidly declined in oxygen near the beginning of the ancient warming event and then oxygen levels fluctuated thereafter.

“All this has potential implications for understanding how climate change will affect these sensitive coastal ecosystems today and in the future,” Wagner says.

###

Media Contact
Paul Gabrielsen
[email protected]

Original Source

https://attheu.utah.edu/uncategorized/microscopic-fossils-record-ancient-climate-conditions/

Related Journal Article

http://dx.doi.org/10.1029/2021PA004225

Tags: BacteriologyClimate ChangeEarth ScienceOceanographyPaleontologyTemperature-Dependent Phenomena
Share13Tweet8Share2ShareShareShare2

Related Posts

blank

New Discovery Reveals Early Hominin Species Coexisted in Ethiopia

August 13, 2025
Genetic Breakthrough: The Unique DNA Factor That Distinguishes Humans

Genetic Breakthrough: The Unique DNA Factor That Distinguishes Humans

August 13, 2025

Mizzou Researchers Uncover New Insights into Immune Response to Influenza

August 13, 2025

‘Essentiality’ Scan Uncovers Microbe’s Vital Survival Toolkit

August 13, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    58 shares
    Share 23 Tweet 15
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Unveiling the Eye’s Hidden Mechanism: A Deep Dive into Its Intricate Clockwork

New Discovery Reveals Early Hominin Species Coexisted in Ethiopia

Oestradiol Functions Suppress Ferroptosis, Kidney Injury

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.