• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, August 25, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

The secret life of bee signals can communicate colony health

Bioengineer by Bioengineer
May 4, 2021
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Recording the electrostatic energy of honeybee hives offers a ‘canary in the coalmine’ look into ecosystem threats and environmental conditions

IMAGE

Credit: Benjamin H. Paffhausen, Julian Petrasch, Uwe Greggers et al.

Honeybees have a complex communication system. Between buzzes and body movements, they can direct hive mates to food sources, signal danger, and prepare for swarming – all indicators of colony health. And now, researchers are listening in.

Scientists based in Germany – with collaborators in China and Norway – have developed a way to monitor the electrostatic signals that bees give off. Basically, their wax-covered bodies charge up with electrostatic energy due to friction when flying, similar to how rubbing your hair can make it stand on end. That energy then gets emitted during communications.

“We were thrilled by the potential of directly accessing the social communication of bees with our method,” says Dr. Randolf Menzel, of the Free University of Berlin. “For the first time we can ask the bees themselves whether their colony is in a healthy condition or whether they suffer from unfavorable environmental conditions including those caused by humans.”

The paper, recently published in the open access journal Frontiers in Behavioral Neuroscience, likens honeybee colonies to a canary in a coal mine. Bees are usually among the first species to be affected by pollutants such as insecticides, and weakened communications can signal their damaging effects. Such evidence may point to potential harm to other wildlife and ecosystems in a way that is quicker and cheaper than other methods.

Menzel and his colleagues worked with 30 beekeepers across Germany over a period of five years. They placed sensors and a central recording device inside and outside a specially designed hive, and monitored the honeybees’ electrostatic field (ESF) data.

They were particularly interested in what is known as the “waggle dance,” a sophisticated messaging system in which honeybees walk in a figure-eight pattern, then “waggle” back and forth through the stretched part of the intersection. This bee ballet communicates flight directions and distance. “Other bees follow the dancing bee, read the message of the dancer, and apply the information about distance and direction to an attractive food source in their outbound flights,” says Menzel.

The primary purpose of their research study was to measure the feasibility of their recording system, which did indeed work, although Menzel notes that scaling up their system would be challenging, and “to get meaningful knowledge about the impact of pesticides and health conditions of bees in a larger area, we will have to use many devices across that area.”

Still, the researchers learned more about hive communication, and found what Menzel described as “unexpected phenomena.” For example, they found that bees perform waggle dances at night as well as during the day, and that insecticides used for treatment against pest mites had a negative impact on honeybees’ communication. They also found that ESF signals were emitted in preparation of swarming, and that their strength didn’t depend on environmental conditions such as humidity and UV radiation.

Menzel says that their system collected a large amount of data, and that they need further studies to improve and finetune interpretation. “So far we have only begun to apply machine learning algorithms to separate and quantify the electrostatic field signals.” In the future though, it’s possible that eavesdropping on bees may provide rich and important information beyond the local pollen hotspot. Their communications could be crucial in understanding – and protecting – whole ecosystems.

###

Media Contact
Mischa Dijkstra
[email protected]

Related Journal Article

http://dx.doi.org/10.3389/fnbeh.2021.647224

Tags: AgricultureBiologyBiomechanics/BiophysicsCircadian RhythmEcology/EnvironmentElectromagneticsEntomologyPhysiologyZoology/Veterinary Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Durable and Flexible Porous Crystals Showcase Exceptional Gas Sorption Capabilities

Durable and Flexible Porous Crystals Showcase Exceptional Gas Sorption Capabilities

August 25, 2025
Rice’s Martí, Sarlah, and Wang Receive National American Chemical Society Honors

Rice’s Martí, Sarlah, and Wang Receive National American Chemical Society Honors

August 25, 2025

Molecular Compound Enables Photoinduced Double Charge Accumulation

August 25, 2025

Astronomers Chart Stellar ‘Polka Dots’ with NASA’s TESS and Kepler Missions

August 25, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    144 shares
    Share 58 Tweet 36
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

MMP-7: Key Diagnostic Marker for Biliary Atresia

New Login System Detects Online Hacks While Preserving User Privacy

Sense of Purpose Linked to Reduced Risk of Dementia, New Research Shows

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.