• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Ice cap study promises new prospects for accurate local climate projections

Bioengineer by Bioengineer
April 19, 2021
in Chemistry
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Christian Panton

New, detailed study of the Renland Ice Cap offers the possibility of modelling other smaller ice caps and glaciers with significantly greater accuracy than hitherto. The study combined airborne radar data to determine the thickness of the ice cap with on-site measurements of the thickness of the ice cap and satellite data. Researchers from the Niels Bohr Institute – University of Copenhagen gathered the data from the ice cap in 2015, and this work has now come to fruition in the form of more exact predictions of local climate conditions.

The accuracy of the study allows for the construction of models for other smaller ice caps and glaciers, affording significantly improved local projections of the condition of glaciers locally, around the globe. The results have recently been published in Journal of Glaciology.

A combination of approaches results in greater accuracy

The initial, principal aim of the study, was to assess the thickness and volume of the Renland Ice Cap, and in the process, validate computer-modelled data against real data. Airborne radar, which measured the thickness of the ice, was compared with measurement results that were known in advance. In addition, researchers availed of satellite-based measurements of the ice velocity on the surface of the ice cap, again juxtaposed with various parameters entered into the computer model, e.g. “basal slide” – in other words, the velocity of movement at the bottom of the ice cap. The combined results provided researchers with an extremely detailed basis material for constructing a computer model that can be applied in other situations.

From Renland to the rest of the world

Iben Koldtoft, PhD student at the Physics of Ice, Climate and Earth section at the Niels Bohr Institute, and first author of the scientific article, explains: “We now have the most optimal parameters for this ice flow model, the Parallet Ice Sheet Model, for the Renland Ice Cap. But despite these being specific local measurements for Renland, we can use these modelling parameters to simulate the ice cap over an entire ice age cycle, for example, and compare the results with the Renland ice core we drilled in 2015. We can examine to what extent the ice cap has changed over time, or how quickly the ice will melt if the temperature rises by a few degrees in the future. Or put more concisely: We now know how the model can be “tuned” to match different climate scenarios. This ensures greater accuracy and a method that is also transferable to other smaller ice caps and glaciers”.

“In fact, we can see that our scientific article initially received many views from Japan and Argentina. At first this was a bit surprising – why there, exactly? But it makes absolute sense. These are countries with smaller local ice sheets and glaciers, who are now excited to be able to project the future evolution of these”, comments Iben Koldtoft.

Smaller scale provides greater visibility

The larger ice sheets in Greenland and Antarctica are of course the most important, when assessing temperature changes and the effects of melting on global climate. However, the smaller ice caps react faster and can be considered as “mini- environments”, where it is possible to follow developments across a shorter timescale. In addition, it is easier to model the smaller scenarios more precisely, points out Iben Koldtoft.

“If we look at Svalbard, an archipelago that lies very far north, they experience climate change as having a far greater local effect than one sees in Greenland, for example. Over time, of course, all these changes will eventually affect the entire climate system, but we can observe it more clearly on a smaller scale”.

The Renland ice core reveals more secrets

In 2015 a core was drilled on the Renland Ice Cap. In the intervening years, scientists have extracted data from the recovered ice core in the form of water isotopes, gases and chemical measurements. These are all proxies for temperature, precipitation accumulation, altitude changes and other climate conditions of east Greenland, where the Renland Ice Cap is located. This data can now be compared with the detailed study and with data from other locations in Greenland. As a result, the study contributes to the increasingly detailed picture of how the climate is changing. Iben Koldtoft emphasises the importance of combining the observational data with computer modelling, and that climate research in general is at a stage where the use of advanced computer simulations and the ability to “tune” them correctly, is now a vital competence. Although glaciers across the globe can be monitored with incredible accuracy by satellites today, there is a need to develop strong computer-based models, combining physics and mathematics, in order to calculate how glaciers will change in the climate of the future, and their effect on future increases in sea levels.

###

Media Contact
Iben Koldtoft
[email protected]

Original Source

https://www.nbi.ku.dk/english/news/news21/ice-cap-study-promises-new-prospects-for-accurate-local-climate-projections-internationally/

Related Journal Article

http://dx.doi.org/10.1017/jog.2021.11

Tags: Climate ChangeClimate ScienceEarth ScienceGeophysicsPaleontologyTemperature-Dependent Phenomena
Share12Tweet8Share2ShareShareShare2

Related Posts

UofL Study Reveals Amplified Liver Damage from Combined Exposure to Alcohol and “Forever Chemicals”

UofL Study Reveals Amplified Liver Damage from Combined Exposure to Alcohol and “Forever Chemicals”

August 5, 2025
blank

Zero-Dimensional Octahedral Metal Halides Synthesized via Solvent Incorporation

August 5, 2025

New Study Reveals How Diatoms Thrive and Illuminate the Southern Ocean

August 4, 2025

Mapping Brain Chemistry Through Humanity’s Evolutionary Journey

August 4, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Neuropsychiatric Risks Linked to COVID-19 Revealed

    71 shares
    Share 28 Tweet 18
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    46 shares
    Share 18 Tweet 12
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Breast Cancer Diagnosis in Young Ethiopians, Swedes

Fasting Essential for Calorie Restriction Benefits in Alzheimer’s Mice

Surfactin-C15 Breaks Cell Membranes: A Dual Study

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.