• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, October 7, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

University of Colorado inter-campus collaboration wins R01 award for salivary gland cancer

Bioengineer by Bioengineer
April 16, 2021
in Biology
Reading Time: 4 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Antonio Jimeno, MD, Ph.D., received a grant of nearly $500K from the National Institutes of Health (NIH) to investigate a potential drug treatment for salivary gland cancer, in collaboration with researcher Tin Tin Su, Ph.D.

IMAGE

Credit: Antonio Jimeno, MD, PhD, and Tin Tin Su, PhD

Two University of Colorado Cancer Center researchers have received a five-year R01 Award for $497,893 per yearfrom the National Institutes of Health (NIH) tostudy a potential new drug treatment for salivary gland cancer.Theaward is part of an inter-campus collaboration between Antonio Jimeno, MD, PhD, co-leader of the Developmental Therapeutics Program, and Tin Tin Su, PhD, co-leader of the Molecular and Cellular Oncology Program.

An orphan disease

Salivary gland cancer(SGC)is a rare disease for which there are currently noapprovedtargetedtherapies. According to Jimeno,this isdueprimarilyto the fact thatSGCisahypomutateddisease,meaning it hasvery few oncogenic(cancer-causing)geneticmutations. Thismakesitchallengingto treatwith traditionaldrugtherapiesthat target proteins bearing activating mutations.

“For example, the successes we’ve seen in lung,colorectal,andbreast cancer, where specific mutationsareselected for aspecificdrug, havenot beenfruitfulin treating salivary gland cancer,” says Jimeno, thedirector of the Head and Neck Cancer Clinical Research Program at theUniversity of Colorado School of Medicine.

“In general,hypomutatedcancers also developfewerneoantigens (proteins that form on cancer cells when certain mutations occur in tumor DNA), making them less visible to the immune system and harder totarget with immunotherapy,” Jimeno says. “Cancers withhigh mutation ratescanoftenbe managed with immunotherapy because thosecancercellsare moreabnormal,making it easier for immune cells to find them.”

BecauseSGCis so rare, it has historicallybeendifficultto study in the lab.With only about 4,000 cases per year in the U.S.,SGCis consideredanorphan disease.In the United States, an orphandiseaseis usually defined as a disease or condition that affects fewerthan 200,000 people.

“Since it’s a rare disease, there are only a handful ofsalivary gland cancercell lines available, and they’re not extremely easy to work with,” Jimeno says. “So,that has precluded meaningful advances in the past.”

To remedy this,Jimeno’slabundertook thetaskof generatingpatient-derived xenografts (PDXs).Essentially,whenaSGCpatient undergoesa resectionto removeatumor,Jimeno’s team receives a sample of the tumor tissue, which is thenprocessed andimplanted intomice. After a few weeks or months,tumors grow on the mice, creating aPDXmodel.From there, the teamcanderive cell lines, which they characterize molecularly using a variety of Cancer Center Shared Resources, including the Functional Genomics Shared Resource and the Flow Cytometry Shared Resource.This gives researchers more avenuesto study both the biology of the cancer and how it responds to treatments.

“There are things that you can dowithcell lines that you cannot dowith tumors implanted onanimals,and vice versa,” Jimeno explains. “But if you have both, youcando a very comprehensive set of experiments. For example,the cell lines are criticalfor studyingmutations and fusion proteins,buttheanimal models are preferablefor therapeutic experimentation to see if a drugactually shrinkstumors.”

Fusion proteins: Salivary gland cancer’sAchillesheel

Finally equipped withamplesalivarygland cancerPDX models andcelllines, Jimeno andSuhavebeen able to advance the study ofthe diseaseat both the cellular and tumor level.

“It’s a true collaboration between basic research scientists like myself and clinicians and physician scientists likeDr. Jimeno,” saysSu, a professor of Molecular, Cellular, and Developmental biology at the University of Colorado at Boulder.

And they’vefound apotential target forSGCtreatment:fusion proteins.

“SVC112 selectively kills cancer cells at a higher rate than normal cells … It’s like finding the Achilles’ heel in a cancer cell.” – Antonio Jimeno, MD, PhD

Fusion proteinsare created by joining parts oftwo previously independent genes, causingrearrangements of the DNAin the process.AndinSGC,these fusion proteinsand the resulting DNA changesseem todrivetumor formation.

Su’sCU Boulderlab andthe bio-tech company she co-founded,SuviCa,havecreatedand patentedafamily ofsyntheticcompoundsthatselectivelyinhibitthe production of fusionproteinsin cancer cells.Importantly, the drugcandidate, SCV112, appears toprimarilyinhibitprotein production in cancer cells– notinhealthy cells.

“SVC112selectively killscancer cells at a higher rate thannormal cells, because itinhibitsproteins that normal cells don’t regularly use butthatcancer cells need to survive,” Jimeno says. “It’slikefinding the Achilles’heel inacancer cell.”

Suis especially excited aboutSVC112’s potential to prevent SGCfrom recurring.

“With currenttreatments, such as chemotherapy, it often looks like it worked,butalotof patients willrelapsea few years later,” she says. “We want to be able to target those stealth cellsthat get left behind and regrow the tumors. That is one of the things that we’re excited about with this drug candidate– it seems to be very good at destroying those tumor-initiatingand tumor-regrowingcells.”

Research could lead tofutureclinicaltrials

Jimeno andSuhave three main goals they hope to accomplish with the new funding from the NIH grant.

First, theywillinvestigatethe role offusion proteinsindrivingSGCusing cell lines.

Second,they willexplorehow the newdrugcandidate SVC112impactsthesefusion proteinsto slow or haltSGC.

Finally,they willdeploySVC112 in animal models(PDXs)ofSGCto determinewhether the drug effectively shrinks tumors.”At the end of the day, I’m an oncologist,” Jimeno says. “I like to see tumorsshrink ordisappear.”

If theproject is successful,Jimeno says the next step would beto moveSVC112into clinical trials for patients.”Right now, there are no therapies approved for salivary gland cancer,” he says. “That is a great unmet need for our patients. So, finding a treatment — that’s the overarching goal.”

###

Media Contact
Valerie R Gleaton
[email protected]

Original Source

https://news.cuanschutz.edu/cancer-center/r01-award-salivary-gland-cancer

Tags: BiologycancerCell BiologyClinical TrialsGenesGeneticsMedicine/HealthPharmaceutical Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Ginger Genome Identifies SMPED1 Gene Controlling Flowering

October 7, 2025
Exploring Phospholipid Impact on Arabidopsis Protein Profiles

Exploring Phospholipid Impact on Arabidopsis Protein Profiles

October 7, 2025

Climate Change Could Trigger Ecological Traps for Species Unable to Adapt

October 7, 2025

Climate Change Poses ‘Ecological Trap’ for Species Struggling to Adapt

October 7, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    477 shares
    Share 191 Tweet 119
  • New Study Reveals the Science Behind Exercise and Weight Loss

    96 shares
    Share 38 Tweet 24
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    94 shares
    Share 38 Tweet 24
  • Ohio State Study Reveals Protein Quality Control Breakdown as Key Factor in Cancer Immunotherapy Failure

    75 shares
    Share 30 Tweet 19

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Analyzing Nursing Students’ Palliative Care Training Needs

Ginger Genome Identifies SMPED1 Gene Controlling Flowering

Building Functional Cytoskeletons Inside DNA Synthetic Cells

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.