• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Algae growing on dead coral could paint a falsely rosy portrait of reef health

Bioengineer by Bioengineer
March 17, 2021
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

New challenges to a once tried-and-true method for assessing reef health

IMAGE

Credit: Image courtesy of Ken Caldeira.

Washington, DC– Algae colonizing dead coral are upending scientists’ ability to accurately assess the health of a coral reef community, according to new work from a team of marine science experts led by Carnegie’s Manoela Romanó de Orte and Ken Caldeira. Their findings are published in Limnology and Oceanography.

Corals are marine invertebrates that build tiny exoskeletons, which accumulate to form giant coral reefs. Widely appreciated for their beauty, these reefs are havens for biodiversity and crucial for the economies of many coastal communities. But they are endangered by ocean warming, seawater acidification, extreme storms, pollution, and overfishing.

Coral reefs use calcium carbonate to construct their architecture, a process called calcification. For a reef to be healthy, its coral’s building activities must exceed erosion, a natural phenomenon that is exacerbated by all the environmental stresses to which human activity is exposing them.

“Coral reefs are dealing with so many simultaneous threats, many of which directly inhibit their ability to grow at a sustainable rate,” Caldeira explained. “If they can’t maintain a slow but steady amount of growth, they could get knocked out by rising sea levels in the coming years.”

However, Romanó de Orte and Caldeira’s research–with former Carnegie colleagues David Koweek (now at Ocean Visions), Yuichiro Takeshita (now at the Monterey Bay Aquarium Research Institute), and Rebecca Albright (now at the California Academy of Sciences)–showed that if researchers only make measurements to assess coral health during the daytime, it could lead to false sense of security.

Why?

Because dead coral is often colonized by algal communities that can also accumulate carbonate minerals during the day. However, most of these deposits dissolve overnight, so the carbonate minerals do not accumulate over time. In contrast, living corals, , which have evolved to build massive carbonate reefs visible from space, can continue to build their skeletons, albeit slowly, even at night.

“It’s long been thought that measuring calcium carbonate production could be linked directly to the health of a coral community,” Romanó de Orte said. “But our findings show that as algae increasingly succeed in overgrowing dead coral, it is going to be more difficult to rely on a once tried-and-true method for assessing whether a reef community is thriving.”

To gain this critical understanding, the research team–which also included Tyler Cyronak of Nova Southeastern University, Alyssa Griffin of the Scripps Institution of Oceanography, Kennedy Wolfe of the University of Queensland, and Alina Szmant and Robert Whitehead of University of North Carolina Wilmington–deployed specially designed, state-of-the-art incubator technology to closely monitor both coral and colonizing algae in an area of Australia’s Great Barrier Reef that had been heavily damaged by two tropical cyclones in 2014 and 2015. They were able to monitor both calcification and dissolution of carbonate minerals, as well as the organisms’ metabolic activity.

“This amazing tool allowed us to home in on the specific role that each organism has in an ecosystem’s total output, which gives us new insights into how reefs are changing” Romanó de Orte explained.

###

Media Contact
Manoela Romanó de Orte
[email protected]

Related Journal Article

http://dx.doi.org/10.1002/lno.11722

Tags: BiodiversityBiologyClimate ChangeEcology/EnvironmentEnvironmental HealthMarine/Freshwater BiologyPollution/Remediation
Share13Tweet8Share2ShareShareShare2

Related Posts

blank

AI Predicts Sinus Surgery Outcomes from Images

August 3, 2025
Fat Cell N-Acetylaspartate Controls Post-Meal Body Temperature

Fat Cell N-Acetylaspartate Controls Post-Meal Body Temperature

August 3, 2025

Boosting Stem Cell Growth with Testis Scaffolds

August 3, 2025

Brain’s Virtual Infection Signals Activate Immune Defense

August 3, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    46 shares
    Share 18 Tweet 12
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    38 shares
    Share 15 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

AI Predicts Sinus Surgery Outcomes from Images

Watch-and-Wait After Immuno-Chemotherapy in NPC

Fat Cell N-Acetylaspartate Controls Post-Meal Body Temperature

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.