• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, November 7, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Porous crystal guides reaction to transform CO2

Bioengineer by Bioengineer
March 4, 2021
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: © 2021 KAUST

By embedding a silver catalyst inside a porous crystal, KAUST researchers have improved a chemical reaction that converts carbon dioxide (CO2) into carbon monoxide (CO), which is a useful feedstock for the chemical industry.

Carbon monoxide is a building block for producing hydrocarbon fuels, and many researchers are searching for ways to produce it from CO2, a greenhouse gas emitted by burning fossil fuels. One strategy involves using electricity and a catalyst to drive a so-called CO2 reduction reaction. But this reaction typically produces a variety of other products, including methane, methanol and ethylene. Separating these products significantly raises the cost of the process, so researchers hope to guide the reaction to generate a single product.

Osama Shekhah and Mohamed Eddaoudi, chemists at KAUST, in collaboration with Ted Sargent’s group at the University of Toronto, have now fine-tuned the CO2 reduction reaction using metal organic frameworks (MOFs). These porous crystals contain a lattice of metal-based nodes connected by carbon-based linker molecules. By altering these components, researchers can tailor the size of an MOF’s pores and its chemical properties.

The researchers created four different MOFs with the same overall lattice arrangement and grew 5-nanometer-wide nanoparticles of silver inside the pores of each MOF. Then they tested each MOF to find how its structure affected the CO2 reduction reaction. They monitored which products emerged from the process and studied how an activated form of CO — a crucial intermediate in the reaction — bound to the silver catalyst.

The most effective MOF contained zirconium-based nodes connected by molecules of 1,4-naphthalenedicarboxylic acid. Because it has smaller pores, its ability to trap CO2 outperformed its rivals.

The silver nanoparticle in this MOF also bound activated CO in a different way than the others, connecting in a “bridging mode” involving two bonds rather than one. This ensured that CO was less likely to transform into unwanted byproducts. “Controlling the type of the CO intermediate during the reaction has a big influence on the CO selectivity,” says Shekhah. Together, these effects boosted the efficiency of CO production to 94 percent, a dramatic improvement in selectivity.

The researchers hope to build on their strategy, making further tweaks to the MOF’s structure to enhance the CO2 reduction reaction. “We believe that this work paves the way for using MOFs as new supports for improving the activity and product selectivity of the CO2 reduction reaction by directly interacting with the gaseous intermediates and controlling their binding mode,” says Eddaoudi.

###

Media Contact
Michael Cusack
[email protected]

Original Source

https://discovery.kaust.edu.sa/en/article/1107/porous-crystal-guides-reaction-to-transform-co2

Related Journal Article

http://dx.doi.org/10.1021/jacs.0c10774

Tags: Chemistry/Physics/Materials SciencesIndustrial Engineering/ChemistryMaterials
Share12Tweet8Share2ShareShareShare2

Related Posts

Innovative Immobilization Technique Enhances Surface Plasmon Resonance Analysis of Membrane Proteins

Innovative Immobilization Technique Enhances Surface Plasmon Resonance Analysis of Membrane Proteins

November 7, 2025
Radiative Coupled Evaporative Cooling Hydrogel Enables Above-Ambient Heat Dissipation and Enhanced Flame Retardancy

Radiative Coupled Evaporative Cooling Hydrogel Enables Above-Ambient Heat Dissipation and Enhanced Flame Retardancy

November 7, 2025

Electroactive Ferrocene Enables Shuttle-Free Aqueous Zinc–Iodine Cells

November 6, 2025

Exploring 3D Chaotic Microcavities with X-Ray Vision

November 6, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    206 shares
    Share 82 Tweet 52
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1301 shares
    Share 520 Tweet 325
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

HIIT Boosts Mental Health and Sleep in College Women

Cumulative Blood Pressure Linked to Cognitive Decline in Seniors

Gender Differences in Serum Metabolites After Intense Exercise

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.