• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, September 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Biotechnologists developed an effective technology for nutrient biocapture from wastewater

Bioengineer by Bioengineer
February 19, 2021
in Biology
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: RUDN University

Biotechnologists from RUDN University in collaboration with Lomonosov MSU and Kurchatov institute made an important contribution to the technology of phosphate and nitrate biocapture from wastewater using Lobosphaera algae fixed on the filters.The biomass obtained in the course of this process can be used as a fertilizer. The results of the study were published in the Journal of Water Process Engineering.

Phosphates and nitrates get to the wastewater together with industrial and household waste, especially detergents. Both substances are parts of phosphorus and nitrogen chemical cycles. However, these cycles are disturbed by human activity, as the growing amounts of phosphates and nitrates cannot be processed by water ecosystems. As a result, these substances turn from useful nutrients to pollutants. Wastewater is treated with special equipment and microorganisms, including microalgae that consume phosphates and nitrates. A team of biotechnologists from RUDN University together with their colleagues from MSU and the Kurchatov Institute developed a biopolymer filter on which useful microalgae can be placed. The polymer is chitosan-based, safe for the algae, biodegradable, and captures chemical elements from wastewater more effectively than its existing analogs.

“Our team was the first to successfully use cross-linked chitosan polymers to immobilize unicellular algae and make them effectively consume nutrients while at the same time not preventing them from growing and photosynthesizing,” said Alexei Solovchenko, a PhD in Biology from the Department of Agrobiotechnology, RUDN University.

Chitosan is a polysaccharide with amino groups and its chemical composition is similar to that of chitin that can be found in shellfish crusts and mushroom cell walls. Chitosan is not water-soluble and therefore can be used to grow algae. However, it is biodegradable. Using an original methodology developed in the Kurchatov Institute, it was cross-linked with glutaraldehyde molecules and thus turned into a strong biocompatible polymer. Then, the team grew the IPPAS C-2047 strain of the Lobosphaera incisa algae on it for seven days.

Based on the results of the seven-day long experiment, the team concluded that a complex of microalgae cells and chitosan-based polymer with a total molecular mass of 600 kDa was more effective than that with a molecular mass of 250 kDa. The algae on the filter captured the nutrients more efficiently than those suspended in the wastewater: specifically, they consumed phosphates 16.7 times and nitrates 1.3 times faster.

Used chitosan biofilters could be repurposed as fertilizers. With time, chitosan would degrade without causing any harm to the environment, while the algae would act as a source of accumulated phosphates and nitrates for the plants.

“Our team has demonstrated that cross-linked chitosan polymers are safe for the environment and effectively support the biocapture of nutrients from wastewater by unicellular algae. When added to a non-toxic medium, the algae biomass could be used as a fertilizer that would gradually release the accumulated nutrients into the soil,” added Alexei Solovchenko from RUDN University.

###

Media Contact
Valeriya Antonova
[email protected]

Related Journal Article

http://dx.doi.org/10.1016/j.jwpe.2020.101774

Tags: Biology
Share13Tweet8Share2ShareShareShare2

Related Posts

blank

Exploring Enterococcus faecium Infections in Mexican Children

September 22, 2025

Standardized Extract Boosts Immunity in Chemotherapy Mice

September 20, 2025

Enhancing Labeo rohita Growth with Trypsin Nanoparticles

September 20, 2025

Comparing ZISO-Driven Carotenoid Production in Dunaliella Species

September 19, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Physicists Develop Visible Time Crystal for the First Time

    68 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    50 shares
    Share 20 Tweet 13
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Latest Trends in Opioid Prescribing Practices for Cancer Patients Revealed

Unlocking the Mysteries of Snapdragon: Insights into Cutting-Edge Technology

Efficient Deep-Blue CsPbBr3 LEDs Meet Rec.2020

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.