• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, July 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Oncotarget: Evaluation of cancer-derived myocardial impairments using a mouse model

Bioengineer by Bioengineer
February 10, 2021
in Biology
Reading Time: 4 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

‘The established mouse cachexia model can therefore be considered useful for analyzing cancer-derived myocardial damage’

IMAGE

Credit: Correspondence to – Yi Luo – [email protected] and Hiroki Kuniyasu – [email protected]

Oncotarget recently published “Evaluation of cancer-derived myocardial impairments using a mouse model” which reported that Myocardial damage in cancer patients is emphasized as a cause of death; however, there are not many murine cachexia models to evaluate cancer-derived heart disorder.

Using the mouse cachexia model that they established previously, the authors investigated myocardial damage in tumor-bearing mice.

When rat cardiomyoblasts were treated with mouse cachexia model ascites and subjected to flux analysis, both oxidative phosphorylation and glycolysis were suppressed, and the cells were in a quiescent state.

These results are in good agreement with those previously reported on cancerous myocardial damage.

The established mouse cachexia model can therefore be considered useful for analyzing cancer-derived myocardial damage.

“The established mouse cachexia model can therefore be considered useful for analyzing cancer-derived myocardial damage”

Dr. Yi Luo from The Nantong University and Dr. Hiroki Kuniyasu from The Nara Medical University said, “Cachexia affects 40–80% of all patients with advanced cancer, especially those with pancreatic, gastric, and esophageal cancers.“

Cancer-derived myocardial impairment is characterized by morphological alterations such as left ventricular wall thinning, decreased heart volume, myocardial fibrosis, and remodeling of the left ventricle as reported in gastrointestinal, pancreatic, and non-small cell lung cancer.

The causes of cancer-derived myocardial impairment might be the effects of cancer itself, background heart disease, and influence of cancer treatments; however, they have not been given much clinical importance, and specific treatment efforts are delayed.

Various factors have been reported as the causes of cancer-derived myocardial impairment derived from the cancer itself.

Despite these advances in our understanding, the multifactorial mechanisms underlying cancer-derived myocardial impairment remain incompletely understood, necessitating further investigations to elucidate the molecular mechanisms and prevent myocardial damage in cancer patients.

In this study, the Oncotarget authors used the mouse cancer cachexia model that they previously established to examine the status of cancer-derived myocardial impairment reported in literature, and validate the model for studying cancer-derived myocardial impairment.

The Luo/Kuniyasu Research Team concluded in their Oncotarget Research Paper, “our established mouse cachexia model showed various myocardial changes associated with cancer cachexia such as oxidative stress in the myocardium, energy metabolism, autophagy, and inflammatory cytokines. Therefore, we propose the use of this model for future investigations of cancerous myocardial damage. We have revealed that combined feeding with laurate and glucose improves cancer sarcopenia [14]. Using this cancer-derived myocardial impairment model, we attempt to assess the effect of the diet supplemented with laurate and glucose.“

###

Sign up for free Altmetric alerts about this article

DOI – https://doi.org/10.18632/oncotarget.27759

Full text – https://www.oncotarget.com/article/27759/text/

Correspondence to – Yi Luo – [email protected] and Hiroki Kuniyasu – [email protected]

Keywords –
cachexia,
myocardium,
atrophy,
mitochondria,
oxidative stress

About Oncotarget

Oncotarget is a biweekly, peer-reviewed, open access biomedical journal covering research on all aspects of oncology.

To learn more about Oncotarget, please visit https://www.oncotarget.com or connect with:

SoundCloud – https://soundcloud.com/oncotarget
Facebook – https://www.facebook.com/Oncotarget/
Twitter – https://twitter.com/oncotarget
LinkedIn – https://www.linkedin.com/company/oncotarget
Pinterest – https://www.pinterest.com/oncotarget/
Reddit – https://www.reddit.com/user/Oncotarget/

Oncotarget is published by Impact Journals, LLC please visit http://www.ImpactJournals.com or connect with @ImpactJrnls

Media Contact

[email protected]
18009220957×105

Media Contact
Ryan James Jessup
[email protected]

Original Source

https://www.oncotarget.com/news/pr/evaluation-of-cancer-derived-myocardial-impairments-using-a-mouse-model/

Related Journal Article

http://dx.doi.org/10.18632/oncotarget.27759

Tags: BiologyBreast CancerBusiness/EconomicscancerCarcinogensEducationMedicine/HealthPolicy/EthicsProstate Cancer
Share12Tweet8Share2ShareShareShare2

Related Posts

Archaeal Ribosome Shows Unique Active Site, Hibernation Factor

Archaeal Ribosome Shows Unique Active Site, Hibernation Factor

July 26, 2025
Machine Learning Uncovers Sorghum’s Complex Mold Resistance

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

July 26, 2025

Root N-Hydroxypipecolic Acid Circuit Boosts Arabidopsis Immunity

July 26, 2025

Single-Cell Screens Reveal Ebola Infection Regulators

July 26, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    50 shares
    Share 20 Tweet 13
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    42 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    45 shares
    Share 18 Tweet 11
  • New Measurements Elevate Hubble Tension to a Critical Crisis

    43 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Durable, Flexible Electrochemical Transistors via Electropolymerized PEDOT

Challenges and Opportunities in High-Filled Polymer Manufacturing

Epicardial Fat: Protector or Threat to Heart Health?

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.