• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 15, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Fighting respiratory virus outbreaks through ‘nano-popcorn’ sensor-based rapid detection

Bioengineer by Bioengineer
January 21, 2021
in Chemistry
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers develop novel sensor for the improved detection of influenza A viruses, with high reproducibility

IMAGE

Credit: Arek Socha from Pixabay

Viral respiratory diseases are easily transmissible and can spread rapidly across the globe, causing significant damage. The ongoing covid-19 pandemic is a testament to this. In the past too, other viruses have caused massive respiratory disease outbreaks: for example, a subtype of the influenza virus, the type A H1N1 virus, was responsible for the Spanish flu and the Swine flu outbreaks. Thus, to prevent such health crises in the future, timely and accurate diagnosis of these viruses is crucial. This is exactly what researchers from Korea have attempted to work toward, in their brand-new study. Read on to understand how!

For several decades now, polymerase chain reaction (PCR)-based assays have been the gold standard for detecting influenza viruses. And while these assays are highly sensitive, they can require expensive reagents and complicated protocols. A potentially better alternative can be “surface-enhanced Raman scattering” (SERS). SERS-based assays work by depositing a liquid sample onto a substrate material with a nanostructured noble metal surface. Viral particles from the samples are detected when they hybridize with substrate-bound “aptamers,” molecules that can bind to specific target molecules. This binding is visually detected as a change in “signal intensity,” which decreases as viral load increases due to conformational changes on the substrate. However, a major drawback of these assays is the poor reproducibility of signals from heterogeneous hot junctions (electron-dense regions that contribute to signals).

In an attempt to overcome this challenge, the aforementioned researchers from Chung-Ang University and Korea Institute of Materials Science, led by Professor Jaebum Choo, designed a novel 3D “nano-popcorn” plasmonic substrate. Speaking of the significance of their study published in Biosensors and Bioelectronics, Prof Choo says, “Infectious disease, caused by respiratory influenza, SARS, MERS, and SARS-2 viruses, can spread periodically and are a threat to global health. Our SERS-based aptasensor approach provides a new diagnostic platform for respiratory infectious diseases in the future.”

In their design, the scientists coated two layers of gold particles on a polymer substrate using thermal evaporation sequentially. The two coats were separated by treatment with a compound called “perfluorodecanethiol: (PFDT). The energy difference between PFDT and gold layer was what caused the gold ions to diffuse to the surface, forming nanoparticles that appear as uniformly spaced “popcorns.” This arrangement collectively strengthened the signal intensity that was produced, by generating multiple “hotspots” on the substrate.

The scientists then assessed the performance of the assay using different concentrations of the H1N1 virus. They successfully detected different viral loads in merely 20 minutes and from a minute volume of 3 μL (3 microliters: a 1000th part of 3 ml). Moreover, the system could also classify different strains of influenza viruses accurately and detected H1N1 viruses at a sensitivity three-fold higher than that of the routinely used ELISA tests. Not just this, the assay was found to be highly reproducible. Pleased with the results, Prof. Choo states, “Our assay system enabled the ultrasensitive and reliable analysis of the influenza virus. Such a method would enable early-stage diagnosis, facilitate antiviral treatment initiation, and provide infection surveillance, particularly for those at high risk for virus-related complications.”

In fact, the team is confident that their findings can, someday, be used to fight the current pandemic. Prof. Choo says, “We are currently developing a SERS-based aptasensor for the rapid diagnosis of the coronavirus from human respiratory samples. We are also developing a new diagnostic approach to differentiate between influenza A viruses and coronaviruses.”

Hopefully, the new “nano-popcorn” assay can help to fight many major health crises in the future.

###

Reference

Authors: Hao Chen, Sung-Gyu Park, Namhyun Choi , Joung-Il Moon, Hajun Dang, Anupam Das, Seunghun Lee, Do-Geun Kim, Lingxin Chen, Jaebum Choo

Title of original paper: SERS imaging-based aptasensor for ultrasensitive and reproducible detection of influenza virus A

Journal: Biosensors and Bioelectronics

DOI: 10.1016/j.bios.2020.112496

Affiliations:

Department of Chemistry, Chung-Ang University, South Korea

Advanced Nano-Surface Department, Korea Institute of Materials Science (KIMS), South Korea

CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Chinese Academy of Sciences, China

About Chung-Ang University

Chung-Ang University is a private comprehensive research university located in Seoul, South Korea. It was started as a kindergarten in 1918 and attained university status in 1953. It is fully accredited by the Ministry of Education of Korea. Chung-Ang University conducts research activities under the slogan of “Justice and Truth.” Its new vision for completing 100 years is “The Global Creative Leader.” Chung-Ang University offers undergraduate, postgraduate, and doctoral programs, which encompass a law school, management program, and medical school; it has 16 undergraduate and graduate schools each. Chung-Ang University’s culture and arts programs are considered the best in Korea.

Website: https://neweng.cau.ac.kr/index.do

About Professor Jaebum Choo

Dr Jaebum Choo is a Professor at the Department of Chemistry, Chung-Ang University. He obtained a PhD in Molecular Spectroscopy at Texas A&M University, following which he was a faculty member at Hanyang University. Previously, Prof Choo served as the Director of the Center for Integrated Human Sensing System and Bionano Fusion Technology Program and is currently the Director of the Biomedical Diagnostics Research Center. His research interests include SERS, biosensors, micro-devices, and molecular spectroscopy in addition to developing ultrasensitive optical nano-sensor systems for rapid and sensitive in vitro diagnostics of infectious diseases. He has authored several research articles in peer-reviewed journals.

Media Contact
Seong-Kee Shin
[email protected]

Related Journal Article

http://dx.doi.org/10.1016/j.bios.2020.112496

Tags: BacteriologyBiologyChemistry/Physics/Materials SciencesInfectious/Emerging DiseasesMaterialsMedicine/HealthMicrobiologyTechnology/Engineering/Computer ScienceVirology
Share12Tweet8Share2ShareShareShare2

Related Posts

Ocular Side Effects Associated with Semaglutide: New Insights

Ocular Side Effects Associated with Semaglutide: New Insights

August 15, 2025
blank

Quantum Gas Defies Warming: A Cool Breakthrough in Physics

August 15, 2025

FSU Chemists Pioneer Advanced X-Ray Material, Revolutionizing Thin Film Imaging

August 15, 2025

Deep Learning Model Accurately Predicts Ignition in Inertial Confinement Fusion Experiments

August 14, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    59 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

AFAR Secures Over $5.7 Million NIH Renewal Funding for Nathan Shock Centers Coordinating Center

Immunotherapy Prolongs Survival in Patients with Rare Skin Cancer

Multifocus Microscope Breaks New Ground in Rapid 3D Live Biological Imaging

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.