• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Botulism breakthrough? Taming botulinum toxin to deliver therapeutics

Bioengineer by Bioengineer
January 8, 2021
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Treatment reverses paralysis in mice; offers a general delivery platform for neurologic drugs

IMAGE

Credit: Sicai Zhang/Dong Lab, Boston Children’s Hospital

While rare, botulism can cause paralysis and is potentially fatal. It is caused by nerve-damaging toxins produced by Clostridium botulinum — the most potent toxins known. These toxins are often found in contaminated food (home canning being a major culprit). Infants can also develop botulism from ingesting C. botulinum spores in honey, soil, or dust; the bacterium then colonizes their intestines and produces the toxin.

Once paralysis develops, there is no way to reverse it, other than waiting for the toxins to wear off. People with serious cases of botulism may need to be maintained on ventilators for weeks or months. But a new treatment approach and delivery vehicle, described today (?) in Science Translational Medicine, could change that.

“There are anti-toxins, but these only work before the toxins enter the motor neurons,” says Min Dong, PhD, a researcher in Boston Children’s Hospital’s Department of Urology and corresponding author on the paper. “What we have developed is the first therapy that can eliminate toxins after they get inside neurons.”

If proven in humans, the approach would represent a breakthrough in treating botulism. In mice, the treatment successfully got inside neurons, reversed muscle paralysis within hours, and enabled mice to withstand doses of botulinum toxin that would otherwise be lethal.

Letting a toxin lead the way

Dong and his colleagues needed to surmount two technical barriers that have prevented the botulism from being treated effectively in the past. Intriguingly, their solution lay in botulinum toxin itself.

“One barrier to treatment has been getting across the cell membrane, which is difficult for protein drugs,” explains Shin-Ichiro Miyashita, PhD, a postdoctoral fellow in Dong’s lab and first author on the paper. “The other is targeting specific cell types, and in this case specificity toward motor neurons and nerve terminals. We took advantage of the fact that botulinum neurotoxins target motor neurons naturally and efficiently, and can deliver a protein cargo across cell membranes.”

The treatment is therefore two-pronged. A botulinum toxin (detoxified through introduced mutations) is the delivery vehicle. The cargo — i.e., the active drug — is a mini-antibody derived from the antibodies of camels, developed by collaborator Charles Shoemaker, PhD, at Tufts University. The team showed that two of these so-called nanobodies can be delivered in tandem into neurons, neutralizing botulinum toxins type A and B at one go.

But there was one more problem to solve.

“This idea and approach had been attempted, but it was difficult to completely get rid of toxicity,” says Dong, “until we identified a new toxin, botulinum neurotoxin X, in 2017. Unlike other botulinum toxins, this new toxin shows no toxicity after we introduce mutations, and serves as a safe delivery tool.”

Botox reversal

Besides botulism, Dong thinks the new treatment could be useful as a “botox reversal” agent. Botox injections, using tiny quantities of the type A botulinum toxin, can safely treat wrinkles and many other medical conditions like neck spasms, excessive sweating, or overactive bladder. However, when the injection goes awry, botox can cause unwanted muscle paralysis as a side effect, and patients have to live with the paralysis for months.

“We can potentially inject our therapeutic protein and get rid of botox in neurons and paralysis within a few hours,” Dong says.

A general delivery platform for neuroactive drugs?

The toxin-guided approach may offer a platform for getting biologic drugs into neurons to treat other disorders, Dong believes. Currently, most biologic drugs act only on cell-surface targets and cannot get into the cell’s interior.

“We provide a protein-based drug delivery platform that achieves highly specific targeting of neurons and efficient penetration of cell membranes,” Dong says. “Combined with nanobodies, which can be developed fairly readily against any protein of interest, this platform can be used to develop therapeutics that modulate proteins and biological processes inside neurons. Its modular nature even allows us to target cell types other than neurons by switching the cell-targeting domain. This could present a general approach for precision drug delivery into cells.”

###

Jie Zhang and Sicai Zhang of Boston Children’s Hospital and Charles Shoemaker of Tufts University are co-authors. The research was supported by the National Institutes of Health and Intelligence Advanced Research Projects Activity (IARPA).

Media Contact
Erin Tornatore
[email protected]

Original Source

https://discoveries.childrenshospital.org/botulism-treatment-delivery-platform/

Related Journal Article

http://dx.doi.org/10.1126/scitranslmed.aaz4197

Tags: Biomedical/Environmental/Chemical EngineeringBiotechnologyMedicine/HealthMolecular BiologyneurobiologyPharmaceutical ChemistryPharmaceutical ScienceToxicology
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Leveraging Virtual Reality to Combat Substance Use Relapse

August 16, 2025
blank

Exploring the Gut-Heart Link: How Microbiota Influence Heart Failure

August 16, 2025

ADAMTS2: Unlocking the Therapeutic Potential of a Multifunctional Protein

August 16, 2025

UBC Okanagan Study Reveals Individual Differences in How Fasting Impacts the Body

August 16, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    59 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Leveraging Virtual Reality to Combat Substance Use Relapse

Exploring the Gut-Heart Link: How Microbiota Influence Heart Failure

ADAMTS2: Unlocking the Therapeutic Potential of a Multifunctional Protein

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.