• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Normothermic Machine Perfusion (NMP) in rat livers extended from 6 to 24 hours

Bioengineer by Bioengineer
November 17, 2020
in Science News
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Author

In a paper published in TECHNOLOGY, a team of researchers from Massachusetts General Hospital (MGH) have demonstrated 24-hour rat liver viability in a normothermic machine perfusion (NMP) system. Rat liver perfusion is an efficient and cost-effective method to study how various pharmacologic agents impact liver parenchyma.

Normothermic machine perfusion (NMP) has the challenge of mirroring in-vivo settings as closely as possible for the liver allograft. This allows drugs, enzymatic reactions, repair processes, and metabolic pathways to affect liver function to their full capacity. However, under normothermic conditions (35-38°C), the perfusions become exponentially more complex when the perfusion duration is extended, severely limiting our ability to observe liver physiology and pharmacologic effects after 6 hours.

This work builds on existing NMP systems with critical modifications in technique and design to
extend the perfusion time of a rat liver allograft without complications or ischemic events. Addressing these issues in NMP greatly expands the armamentarium of experiments that can be conducted to assess how livers responds to physiologic insults and pharmacologic agents over time ex-vivo.

Another major achievement of this research is the identification of perfusion metrics that are predictive of long-term (24-hour) perfusion success. Liver oxygen consumption and rises in intra-hepatic resistance (see image) are shown to be early predictive markers of perfusion system contamination. These markers can be utilized in future experiments to assess the stability of long NMP experiments which can save valuable time and resources in pharmacologic studies.

The team from MGH is working now to utilize long-term rat liver normothermic perfusions to trial different pharmacologic delivery mechanisms, such as lipid nanoparticles, as a novel method of targeted drug delivery.

###

Corresponding author for this study in TECHNOLOGY is Dr. Korkut Uygun PhD ([email protected]).
Additional co-authors are Casie A. Pendexter, Stephanie E.J. Cronin, Dr. Siavash Raigani MD, Dr. Reiner J. de Vries MD PhD, Dr. Heidi Yeh MD, and Dr. James F. Mark-mann MD PhD.

This work was funded from the US National Institutes of Health (NSF ATP-Bio ERC grant (NSF 1941543), R01DK096075, R01DK114506, R01DK107875). Further, we gratefully acknowledge re-search support to Omar Haque by the American Liver Foundation (2019 Hans Popper Memorial Post-doctoral Research Fellowship) and the American College of Surgeons (Grant number 1123-39991 scholarship endowment fund).

For more insight into the research described, readers are invited to access the paper on TECHNOLOGY.

IMAGE

Caption: Normothermic machine perfusion system with rat liver perfused in William’s E based media. b) Intra-hepatic resistance levels at 12 hours predictive of contaminated versus uncontaminated 24-hour perfusions. c) Intra-hepatic resistance of five uncontaminated perfusions show relatively stable pressures over 24 hours.

Fashioned as a high-impact, high-visibility, top-echelon publication, this new ground-breaking journal – TECHNOLOGY – will feature the development of cutting-edge new technologies in a broad array of emerging fields of science and engineering. The content will have an applied science and technological slant with a focus on both innovation and application to daily lives. It will cover diverse disciplines such as health and life science, energy and environment, advanced materials, technology-based manufacturing, information science and technology, and marine and transportations technologies.

About World Scientific Publishing Co.

World Scientific Publishing is a leading independent publisher of books and journals for the scholarly, research, professional and educational communities. The company publishes about 600 books annually and about 135 journals in various fields. World Scientific collaborates with prestigious organizations like the Nobel Foundation and US National Academies Press to bring high quality academic and professional content to researchers and academics worldwide. To find out more about World Scientific, please visit http://www.worldscientific.com.
For more information, contact Tay Yu Shan at [email protected].

Media Contact
Yu Shan Tay
[email protected]

Original Source

https://www.worldscientific.com/pressroom/2020-11-17-01

Related Journal Article

http://dx.doi.org/10.1142/S2339547820500028

Tags: Biomedical/Environmental/Chemical EngineeringBiotechnologyGastroenterologyLiverMedicine/HealthPhysiologyTransplantation
Share12Tweet8Share2ShareShareShare2

Related Posts

Evaluating Pediatric Emergency Care Quality in Ethiopia

February 7, 2026

TPMT Expression Predictions Linked to Azathioprine Side Effects

February 7, 2026

Improving Dementia Care with Enhanced Activity Kits

February 7, 2026

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.