Scientists at Osaka University develop silicon nanoresonators that can control the scattering of light when excited by another laser; this research may lead to faster and completely optical computer switches and circuits
Credit: Osaka University
Osaka, Japan – A team of researchers led by Osaka University and National Taiwan University created a system of nanoscale silicon resonators that can act as logic gates for light pulses. This work may lead to the next generation of silicon-based computer processors that bridge the gap between electronic and optical signals.
Silicon is among the abundant elements in our planet – and is the basis for all modern computing. That is, from smartphones to mainframes, all computation happens based on electrical signals coursing through silicon transistors. Making switches and logic gates from electronic signals is easy, since voltages can control the flow of current in other wires. However, data on the internet is primarily sent as light pulses over fiber optic cables. The ability to control both data and logic completely with light on silicon could lead to much faster devices.
The challenge is that particles of light, called photons, hardly interact with each other, so pulses cannot switch each other on or off to perform logical tasks. Nonlinear optics is the field of study that works to find materials in which beams of light interact in some way. Unfortunately, the non-linearity of single crystal silicon is extremely weak, so in the past, it was necessary to use very intense lasers.
Now, scientists at Osaka University and National Taiwan University have increased the nonlinearity of silicon 100,000 times by creating a nano-optical resonator, so that all-optical switches can be operated using a continuous low-power laser. They accomplished this by fabricating tiny resonators from blocks of silicon less than 200 nm in size. Laser light with a wavelength of 592 nm can become trapped inside and rapidly heat the blocks, based on the principle of Mie resonance. “A Mie resonance occurs when the size of a nanoparticle matches a multiple of the light wavelength,” author Yusuke Nagasaki says.
With a nanoblock in a thermo-optically induced hot state, a second laser pulse at 543 nm can pass with almost no scattering, which is not the case when first laser is off. The block can cool with relaxation times measured in nanoseconds. This large and fast nonlinearity leads to potential applications for GHz all-optical control at the nanoscale. “Silicon is expected to remain the material of choice for optical integrated circuits and optical devices,” senior author Junichi Takahara says.
The current work allows for optical switches that take up much less space than previous attempts. This advance opens the way for direct on-chip integration as well as super-resolution imaging.
###
The article, “Giant photothermal nonlinearity in a single si
licon nanostructure,” was published in Nature Communications at DOI: https:/
About Osaka University
Osaka University was founded in 1931 as one of the seven imperial universities of Japan and is now one of Japan’s leading comprehensive universities with a broad disciplinary spectrum. This strength is coupled with a singular drive for innovation that extends throughout the scientific process, from fundamental research to the creation of applied technology with positive economic impacts. Its commitment to innovation has been recognized in Japan and around the world, being named Japan’s most innovative university in 2015 (Reuters 2015 Top 100) and one of the most innovative institutions in the world in 2017 (Innovative Universities and the Nature Index Innovation 2017). Now, Osaka University is leveraging its role as a Designated National University Corporation selected by the Ministry of Education, Culture, Sports, Science and Technology to contribute to innovation for human welfare, sustainable development of society, and social transformation.
Website: https:/
Media Contact
Saori Obayashi
[email protected]
Original Source
https:/
Related Journal Article
http://dx.