• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 8, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Sentinels of ocean acidification impacts survived Earth’s last mass extinction

Bioengineer by Bioengineer
September 28, 2020
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Katja Peijnenburg, Erica Goetze, Deborah Wall-Palmer, Lisette Mekkes.

Two groups of tiny, delicate marine organisms, sea butterflies and sea angels, were found to be surprisingly resilient–having survived dramatic global climate change and Earth’s most recent mass extinction event 66 million years ago, according to research published this week in the Proceedings of the National Academy of Sciences led by Katja Peijnenburg from Naturalis Biodiversity Center in the Netherlands.

Sea butterflies and sea angels are pteropods, abundant, floating snails that spend their entire lives in the open ocean. A remarkable example of adaptation to life in the open ocean, these mesmerizing animals can have thin shells and a snail foot transformed into two wing-like structures that enable them to “fly” through the water.

Sea butterflies have been a focus for global change research because they make their shells of aragonite, a form of calcium carbonate that is 50 percent more soluble than calcite, which other important open ocean organisms use to construct their shells. As their shells are susceptible to dissolving in more acidified ocean water, pteropods have been called “canaries in the coal mine,” or sentinel species that signal the impact of ocean acidification.

With some pteropods having thin shells and others having only partial or absent shells, such as the sea angels, their fossil record is patchy. Abundant pteropod fossils are only known from 56 million years ago onward and mostly represent the fully-shelled sea butterflies. These observations led to the notion that evolutionarily, pteropods are a relatively recent group of gastropods.

An international team of researchers sampled 21 pteropod species across two ocean transects as part of the Atlantic Meridional Transect programme and collected information on 2,654 genes. Analyzing these data and key pteropod fossils, the scientists determined that the two major groups of pteropods, sea butterflies and sea angels, evolved in the early Cretaceous, about 139 million years ago.

“Hence, both groups are much older than previously thought and must have survived previous episodes of widespread ocean acidification, such as at the end of the Cretaceous, 66 million years ago, and the Paleocene-Eocene Thermal Maximum, 56 million years ago,” said Peijnenburg.

Knowing whether major groups of pteropods have been exposed to periods of high carbon dioxide is important as researchers attempt to predict how various marine species may respond to current and future global change.

“Although these results suggest that open ocean, shelled organisms have been more resilient to past ocean acidification than currently thought, it is unlikely that pteropods have experienced global change of the current magnitude and speed during their entire evolutionary history,” said Erica Goetze, co-author and University of Hawai’i at Mānoa oceanographer.

It is still an open question whether marine organisms, particularly those that calcify, have the evolutionary resilience to adapt fast enough to an increasingly acidified ocean.

“Current rates of carbon release are at least an order of magnitude higher than we have seen for the past 66 million years,” said Peijnenburg. Hence, she stressed the disclaimer “past performance is no guarantee of future results.”

###

The science team collaborating on this research included Katja Peijnenburg, Arie Janssen, and Deborah Wall-Palmer from Naturalis Biodiversity Center, Leiden, The Netherlands; Erica Goetze from the University of Hawai’i at Mānoa; Amy Maas from the Bermuda Institute of Marine Sciences; Jonathan Todd from the Natural History Museum, London, U.K., and Ferdinand Marlétaz from the Okinawa Institute of Science and Technology, Japan.

Media Contact
Marcie Grabowski
[email protected]

Original Source

https://www.soest.hawaii.edu/soestwp/announce/news/sentinels-of-ocean-acidification-impacts-survived-earths-last-mass-extinction/

Related Journal Article

http://dx.doi.org/10.1073/pnas.1920918117

Tags: BiodiversityBiologyClimate ChangeDevelopmental/Reproductive BiologyEcology/EnvironmentMarine/Freshwater BiologyOceanographyPaleontologyPopulation Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

Prone Positioning Insights: ICU Nurses’ Knowledge and Attitudes

October 8, 2025

Selecting Teams for Mars Missions

October 8, 2025

Tarlatamab vs. Comparators in Advanced Small Cell Lung Cancer

October 8, 2025

Repeated Brain Tumor Sampling Reveals Treatment Response in Glioblastoma Patients

October 8, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1113 shares
    Share 444 Tweet 278
  • New Study Reveals the Science Behind Exercise and Weight Loss

    100 shares
    Share 40 Tweet 25
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    95 shares
    Share 38 Tweet 24
  • Ohio State Study Reveals Protein Quality Control Breakdown as Key Factor in Cancer Immunotherapy Failure

    79 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Prone Positioning Insights: ICU Nurses’ Knowledge and Attitudes

Southward Impact Excavates Lunar Magma Ocean

Selecting Teams for Mars Missions

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.