• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Comparing face coverings in controlling expired particles

Bioengineer by Bioengineer
September 25, 2020
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Surgical, N95 masks block most particles

IMAGE

Credit: Christopher Cappa, UC Davis

Laboratory tests of surgical and N95 masks by researchers at the University of California, Davis, show that they do cut down the amount of aerosolized particles emitted during breathing, talking and coughing. Tests of homemade cloth face coverings, however, show that the fabric itself releases a large amount of fibers into the air, underscoring the importance of washing them. The work is published Sept. 24 in Scientific Reports.

As the COVID-19 pandemic continues, the use of masks and other face coverings has emerged as an important tool alongside contact tracing and isolation, hand-washing and social distancing to reduce the spread of coronavirus. The CDC and the World Health Organization endorse the use of face coverings, and masks or face coverings are required by many state and local governments, including the state of California.

The goal of wearing face coverings is to prevent people who are infected with COVID-19 but asymptomatic from transmitting the virus to others. But while evidence shows that face coverings generally reduce the spread of airborne particles, there is limited information on how well they compare with each other.

Sima Asadi, a graduate student working with Professor William Ristenpart in the UC Davis Department of Chemical Engineering, and colleagues at UC Davis and Icahn School of Medicine at Mount Sinai, New York, set up experiments to measure the flow of particles from volunteers wearing masks while they performed “expiratory activities” including breathing, talking, coughing and moving their jaw as if chewing gum.

Asadi and Ristenpart have previously studied how people emit small particles, or aerosols, during speech. These particles are small enough to float through the air over a considerable distance, but large enough to carry viruses such as influenza or coronavirus. They have found that a fraction of people are “superemitters” who give off many more particles than average.

The 10 volunteers sat in front of a funnel in a laminar flow cabinet. The funnel drew air from in front of their faces into a device that measured the size and number of particles exhaled. They wore either no mask, a medical-grade surgical mask, two types of N95 mask (vented or not), a homemade paper mask or homemade one- or two-layer cloth mask made from a cotton T-shirt according to CDC directions.

Up to 90 percent of particles blocked

The tests only measured outward transmission — whether the masks could block an infected person from giving off particles that might carry viruses.

Without a mask, talking (reading a passage of text) gave off about 10 times more particles than simple breathing. Forced coughing produced a variable amount of particles. One of the volunteers in the study was a superemitter who consistently produced nearly 100 times as many particles as the others when coughing.

In all the test scenarios, surgical and N95 masks blocked as much as 90 percent of particles, compared to not wearing a mask. Face coverings also reduced airborne particles from the superemitter.

Homemade cotton masks actually produced more particles than not wearing a mask. These appeared to be tiny fibers released from the fabric. Because the cotton masks produced particles themselves, it’s difficult to tell if they also blocked exhaled particles. They did seem to at least reduce the number of larger particles.

The results confirm that masks and face coverings are effective in reducing the spread of airborne particles, Ristenpart said, and also the importance of regularly washing cloth masks.

###

Additional co-authors on the study are Christopher Cappa, Santiago Barreda and Anthony Wexler at UC Davis; and Nicole Bouvier, Icahn School of Medicine at Mount Sinai, New York. It was supported by a grant from the National Institute of Allergy and Infectious Diseases of the National Institutes of Health.

Media Contact
Andy Fell
[email protected]

Original Source

https://www.ucdavis.edu/news/comparing-face-coverings-controlling-expired-particles

Related Journal Article

http://dx.doi.org/10.1038/s41598-020-72798-7

Tags: Infectious/Emerging DiseasesMedicine/HealthTechnology/Engineering/Computer ScienceVirology
Share12Tweet8Share2ShareShareShare2

Related Posts

Enhanced Patient-Specific Mandible Plates: A Proven Framework

November 5, 2025

Genomic Insights Define Prognostic Mantle Cell Lymphoma Subtypes

November 5, 2025

Hidden Dangers: Drooling and Aspiration in Cerebral Palsy

November 5, 2025

Patent Ductus Arteriosus: Impact on Newborn Kidney Health

November 5, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1299 shares
    Share 519 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Two Minor Innovations That Could Revolutionize Agriculture

Cytogenetic Abnormalities in Lebanese Multiple Myeloma

Enhanced Patient-Specific Mandible Plates: A Proven Framework

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.