• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Smart virus

Bioengineer by Bioengineer
September 14, 2020
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Russian researchers have found MicroRNA molecules potentially capable of repressing the replication of human coronaviruses

IMAGE

Credit: @Nersisyan, et. al.

HSE University researchers have found microRNA molecules that are potentially capable of repressing the replication of human coronaviruses, including SARS-CoV-2. It turns out that the virus uses miRNA hsa-miR-21-3p to inhibit growth in the first stages of infection in order to delay the active immune response. The results of the research have been published in the journal PeerJ.

After the virus gets inside the cell, it starts actively interacting with various in-cell molecules. One such molecule class is microRNAs (miRNAs), which are small RNAs whose main function is to regulate gene expression. When a virus enters, miRNAs start binding certain parts of its genome RNA, which leads to the destruction of virus RNAs. Such an attack can stop virus replication completely. However, in cases when miRNAs are not very ‘aggressive’, such interactions do not destroy the virus but rather slow down its replication. This scenario is beneficial for the virus since it helps avoid a fast immune response in the cell. And some of the viruses purposefully accumulate host miRNA binding sites. This becomes their advantage: viruses with more binding sites survive and reproduce better, which leads to their evolutionary domination.

Researchers from the HSE Faculty of Biology and Biotechnology, Stepan Nersisyan and Alexander Tonevitsky, together with first-year students Narek Engibaryan, Aleksandra Gorbonos, Ksenia Kirdey, and Alexey Makhonin, detected cell miRNAs that are able to bind coronavirus genomes.

There are seven types of human coronaviruses in total. Four of them (HCoV-OC43, HCoV-NL63, HCoV-HKU1 and HCoV-229E) are widespread and cause the common cold, while viruses MERS-CoV, SARS-CoV and SARS-CoV-2 can cause dangerous atypical pneumonia. The researchers found four families of human miRNAs with detected binding sites with all the viruses under consideration.

The image shows miRNA binding sites hsa-miR-21-3p and hsa-miR-421, which are mutual for six out of seven human coronaviruses.

To find out how the virus can interact with the detected miRNAs, the researchers analysed the available data on miRNA sequences in lungs of mice infected with SARS-CoV. They discovered that the infection leads to an 8-fold increase in the expression of the previously detected miRNA hsa-miR-21-3p.

‘MiRNA hsa-miR-21-3p has big potential for binding all human coronaviruses. But after infection with SARS-CoV, the concentration of this miRNA in the lungs grows a lot. If we assume that this is a mechanism of immune response, it is unclear why the virus does not eliminate the binding sites with cell miRNAs in the process of mutation. On the contrary, we see that the virus ‘accumulates’ them in its genome during the evolution – our research demonstrates that such sites are present in all human coronaviruses and do not mutate considerably. We suppose that this way the virus uses this miRNA to slow down its replication in the early stages of infection in order to delay the active immune response,’ Stepan Nersisyan said.

The next step of the team’s research will be experimental verification of their discoveries. The researchers are also planning to investigate the possibility of medicinal effect on the virus that targets the discovered miRNAs. In particular, they plan to determine whether their artificial introduction or elimination is able to prevent virus reproduction.

###

This link will become live when the embargo lifts. EMBARGOED until 14 September 2020, 7:00 am EST USA.

Media Contact
Liudmila Mezentseva
[email protected]

Related Journal Article

http://dx.doi.org/10.7717/peerj.9994

Tags: Cell BiologyInfectious/Emerging DiseasesMedicine/HealthMicrobiologyVirology
Share12Tweet8Share2ShareShareShare2

Related Posts

Evaluating Pediatric Emergency Care Quality in Ethiopia

February 7, 2026

TPMT Expression Predictions Linked to Azathioprine Side Effects

February 7, 2026

Improving Dementia Care with Enhanced Activity Kits

February 7, 2026

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.