• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Inventing new tools to peer into the gastrointestinal tract

Bioengineer by Bioengineer
August 19, 2020
in Biology
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

New sensors can reveal therapeutic targets, impact of probiotics

IMAGE

Credit: University of Houston

A University of Houston researcher is developing a new set of metal sensors that will be able to function in the gastrointestinal tract, a low oxygen environment, to examine how gut bacteria respond when trace metal nutrients, like iron and zinc, are thrown out of balance either through diet or disease.

“We are developing new fluorescent metal sensors that do not rely on oxygen so that they can be applied to gut bacteria cultures under low oxygen or anaerobic conditions,” said Melissa Zastrow, assistant professor of chemistry. Zastrow has been awarded $1.9 million from the National Institute of General Medical Sciences to develop her protein-based metal sensors.

Trace metal nutrients are tightly regulated in living systems to avoid deficiency or toxic overload, but metal levels in the gastrointestinal tract vary with diet. Dietary metals affect the colonization of bacteria and the ability to resist the impact of infectious bacteria, leading to an increased chance of infection or gastrointestinal diseases.

But how that happens, the molecular mechanisms at play, remains largely unknown. Understanding how diet changes the gut microbiota and its function should lay the foundation for disease treatment and prevention.

“This lack of knowledge severely limits our ability to predict how diet or host metal status will impact treatment of gastrointestinal diseases or infection. Our long-term goal is to elucidate the molecular mechanisms governing how essential metals affect the human gut microbiota,” said Zastrow.

Researchers have been detecting metals in biological systems for years, typically with fluorescent sensors made from synthetic materials or green fluorescent proteins (GFP), which require oxygen to become fluorescent. Since a lot of gut bacteria cannot survive in the presence of oxygen and the gut is a mostly oxygen-free environment, GFP-based sensors do not work well for studying them.

Zastrow’s sensors will use proteins, which she prefers since they can be sent to a specific target, like a single type of bacterial species, but they won’t require oxygen to become fluorescent.

“Oxygen-insensitive protein-based fluorescent sensors will be used in live anaerobic cultures containing Lactobacillus species to study metal uptake and how metal ion levels vary over time,” said Zastrow, who will also examine how essential metals affect probiotic Lactobacillus species.

Probiotic bacteria, which deliver health benefits when consumed in adequate amounts, have long been used to enrich gut health. Despite decades of research, however, probiotic effectiveness is debatable and often conflicting, so there is significant need to understand molecular mechanisms underlying probiotic impacts and how these are affected by metals. Zastrow said that information can lead to better, individualized treatment.

“If you understand what makes up a patient’s gut community and how it is functioning, then you can potentially make more informed decisions about how to treat them,” said Zastrow.

###

Media Contact
Laurie Fickman
[email protected]

Original Source

https://uh.edu/news-events/stories/august-2020/081920-melissa-zastrow-metal-sensors-low-oxygent-gut-microbes.php

Tags: BacteriologyBiochemistryBiotechnologyChemistry/Physics/Materials SciencesGastroenterologyInternal MedicineMedicine/HealthPharmaceutical SciencesPharmaceutical/Combinatorial Chemistry
Share12Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Barriers and Boosters of Seniors’ Physical Activity in Karachi

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.