• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, January 17, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

WVU toxicologist earns $3 million NIH grant to study impact of air pollution on lung healing

Bioengineer by Bioengineer
August 11, 2020
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Greg Ellis/West Virginia University

Each time we breathe in, we’re not inhaling just one component that seeps into our lungs. It’s a medley of gasses and particles – both natural and human-made – that can unleash unknown consequences on respiratory health.

One knowledge gap to understanding the effects of inhaling outdoor air pollution, according to Salik Hussain, assistant professor of physiology and pharmacology at the West Virginia University School of Medicine, is that the scientific community has largely focused on studying only individual toxicants, such as particles or gases.

In reality, Hussain said, “we inhale a mixture of everything.”

Through the aid of a five-year, $3 million grant from the National Institutes of Health, Hussain will delve into the impact of inhalation co-exposure, namely from particles and ozone, on lung tissue regeneration.

“If we look at how environmental particles or gasses are studied at this moment, they are studied as individual components 99 percent of the time,” said Hussain, who runs the Hussain Lab, which researches pulmonary and systemic health effects of inhalation exposure. He’s also a member of the WVU Center for Inhalation Toxicology.

“Developing and studying the co-exposure scenario in a standardized, controlled fashion, such as a laboratory setting,” Hussain said, “will enable a better mechanistic understanding of how environmental exposures result in adverse outcomes.”

His aim is twofold: To steer policy and decision-making pertaining to mixed environmental pollutants, and to improve health and well-being in susceptible populations.

Specifically, he plans to identify adverse outcomes of carbon black (a surrogate of the carbon core of ultrafine particles) and ground level ozone (the most reactive gas component of air pollution) inhalation, and study mechanisms leading to lung injury and impairment of lung regeneration.

In real world/co-exposure situations, unanticipated outcomes can occur such as ultrafine air pollution particles carrying other pollutants into areas of lungs usually not affected by those pollutants.

Gaseous components can modify the surfaces of particles to make them more reactive, Hussain said. This can lead to either aggravation or heightened susceptibility to more severe clinical outcomes such as acute lung injury, a serious pulmonary condition with up to 40 percent mortality that kills nearly 200,000 Americans each year.

With this funding, Hussain plans to study how air pollution inhalation leads to changes in susceptibility to develop ALI and impact the ability of the lungs to regenerate after ALI. He will be studying mechanistic pathways of lung stem/progenitor cells reprogramming after inhalation of the toxicants.

According to the World Health Organization, more than four million deaths are linked to outdoor environmental pollution each year.

“Environmental health is not a developing country’s problem,” Hussain said. “It is also a developed country’s problem. My work has a translational angle, where the goal is to improve the health of the communities and people across the world.”

The NIH grant awarded to Hussain is part of one of the National Institute of Environmental Health Sciences signature programs, the highly-competitive Outstanding New Environmental Scientist Award, designated to cultivate the next leaders in environmental health sciences.

Hussain holds a secondary appointment in the department of Microbiology, Immunology and Cell Biology.

###

Media Contact
Jake Stump, Director of Research Communications
[email protected]

Original Source

https://wvutoday.wvu.edu/stories/2020/08/11/the-air-out-there-wvu-toxicologist-earns-3-million-nih-grant-to-study-impact-of-air-pollution-on-lung-healing

Tags: Medicine/HealthPhysiologyPublic HealthPulmonary/Respiratory Medicine
Share12Tweet8Share2ShareShareShare2

Related Posts

Innovative Model Cuts Mortality in High-Risk Hip Fractures

January 17, 2026

Understanding Rehabilitation Goals for Hip Fracture Recovery

January 17, 2026

ALBI Score Links to Metabolically Healthy Obesity

January 17, 2026

Revolutionizing Meniscal Allografts with Patient-Specific 3D Models

January 17, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    155 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    147 shares
    Share 59 Tweet 37
  • Robotic Ureteral Reconstruction: A Novel Approach

    78 shares
    Share 31 Tweet 20
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    54 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Impact of Nose Shape on Missile Warhead Performance

Innovative Model Cuts Mortality in High-Risk Hip Fractures

Understanding Rehabilitation Goals for Hip Fracture Recovery

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.