• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, October 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

UM Bio Station researchers unlock mystery of subterranean stoneflies

Bioengineer by Bioengineer
July 1, 2020
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: UM photo

FLATHEAD LAKE – In a new study published in the scientific journal Ecology, researchers from the University of Montana’s Flathead Lake Biological Station may have unlocked a mystery surrounding unique aquatic insects in the Flathead watershed.

“There’s a surprising adaptation of stoneflies in alluvial aquifers that allows them to use low-oxygen or oxygen-free environments,” said FLBS researcher Rachel Malison, lead author on the study. “These aquifers are hotspots of biodiversity, and this study highlights the vital role gravel-bed river floodplains play on the landscape.”

River floodplains are among the most biodiverse landscapes on earth. They provide an important habitat for aquatic and terrestrial organisms, and their aquifers (i.e., shallow groundwater beneath and adjacent to the river) are key components of complex ecosystems worldwide. The Nyack floodplain of the Middle Fork Flathead River outside Glacier National Park, for instance, sustains everything from microbes to grizzly bears and is home to over half of the 100-plus species of stoneflies known in the state of Montana.

But there’s a unique mystery at work within these river floodplains. Out of sight and under the surface, alluvial aquifers are composed of unconsolidated materials and offer limited sources of carbon for sustaining organisms and food webs. Alluvial aquifers also can contain extreme environmental conditions and an abundance of methane gas, which is typically produced in freshwater ecosystems within anoxic (zero-oxygen) or hypoxic (significantly low-oxygen) environments.

To this point, most stoneflies are thought to require highly oxygenated water environments to survive. But in the alluvial aquifer of the Nyack floodplain, large populations of subterranean stoneflies exist that can be found in low-oxygen environments, and significant portions of their biomass carbon derive from methane.

The question of how these stoneflies could survive and possibly access food in such an inhospitable, low-oxygen environment, is a question that Malison and her team of researchers set out to address.

“It was in the early-1990s that [FLBS researcher] Bonnie Ellis first discovered that a species of stonefly in the Nyack floodplain had the ability to survive anoxia exposure, and it’s been a mystery ever since,” Malison said. “No other stoneflies have this adaptation, so we wanted to investigate to better understand how large populations of stoneflies might be supported in aquifer food webs.”

Through the course of their study, Malison and her fellow researchers tested the anoxic and hypoxic responses of nearly 2,500 stonefly individuals in three alluvial aquifer species and nine river species. Compared to their surface-dwelling relatives, the aquifer stoneflies performed better in low-oxygen and oxygen-free conditions, surviving an average of three times longer than their above-ground counterparts.

Additionally, the aquifer stoneflies were still able to keep moving and crawling when exposed to 76 hours without oxygen, which has important implications for how these species may be able to access different food resources in the aquifer.

Delving into the DNA of the stoneflies, the researchers showed that the aquifer stoneflies have gene sequences for hemocyanin, an oxygen-transport respiratory protein, which could represent a possible mechanism for the stoneflies’ ability to survive at low-oxygen levels.

The results of the study show that subterranean stoneflies likely are able to exploit rich carbon resources in anoxic zones, which may explain their extraordinarily high abundance in gravel-bed floodplain aquifers. Additionally, their remarkable ability to perform well in low-oxygen and oxygen-free conditions is unique within the entire order of stoneflies.

It’s a discovery that suggests unconventional and surprising methane sources likely support a crucial component of biodiversity and productivity in floodplains all over the world.

“These findings begin to help us understand how vulnerable different stoneflies might be to climate change,” Malison said. “As waters warm they contain less oxygen, potentially causing stress and negatively influencing populations of the more sensitive species.”

###

This study was made possible thanks to funding from the National Science Foundation. In addition to Malison, other researchers on the study included current FLBS researchers Amanda DelVecchia, Brian Hand and Gordon Luikart; FLBS researchers emerita Jack Stanford and Bonnie Ellis; UM researcher Arthur Woods; and Ehime University (Japan) researchers Maribet Gamboa and Kozo Watanabe, as well as past FLBS intern Hailey Jacobson.

The complete study is found in the science journal Ecology at https://esajournals.onlinelibrary.wiley.com/doi/10.1002/ecy.3127.

Media Contact
Rachel Malison
[email protected]

Original Source

https://bit.ly/3ijcqjS

Related Journal Article

http://dx.doi.org/10.1002/ecy.3127

Tags: BiodiversityBiologyClimate ChangeEcology/EnvironmentMarine/Freshwater Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

Brainstem Connectivity Differences by Sex and Menopause

Brainstem Connectivity Differences by Sex and Menopause

October 12, 2025
ERβ Provides Gender-Specific Defense Against Alzheimer’s Disease

ERβ Provides Gender-Specific Defense Against Alzheimer’s Disease

October 12, 2025

Street View Greenspace Boosts Midlife Women’s Heart Health

October 12, 2025

Five-Toed Jerboa: Unveiling High-Altitude Adaptation

October 12, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1223 shares
    Share 488 Tweet 305
  • New Study Reveals the Science Behind Exercise and Weight Loss

    103 shares
    Share 41 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    100 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    89 shares
    Share 36 Tweet 22

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Aptamer-Enhanced Monocytes Reduce Tau and Neuroinflammation

Energy Shortages Hinder DPRK Agriculture’s Drought Resilience

Topological Influence on Mechanical Properties of 3D Printed Porous Structures

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 64 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.