• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 24, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Determining effective magnetic moment of multicore nanoparticles

Bioengineer by Bioengineer
June 16, 2020
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Magnetic nanoparticles can be used for drug targeting, storage media, more

IMAGE

Credit: Frank Ludwig

WASHINGTON, June 16, 2020 — Magnetic nanoparticles, a class of nanoparticles that can be manipulated by magnetic fields, have a wide range of technical and biomedical applications, including magnetic hyperthermia, targeted drug delivery, new magnetic storage media and nanorobots. Most commercial nanoparticles do not possess a single magnetic core but have a number of small magnetic crystals called crystallites.

The important question for researchers is how these crystallites behave inside a multicore nanoparticle and how they respond to an applied magnetic field. A paper in the Journal of Applied Physics, from AIP Publishing, compares the effective magnetic moments of different multicore nanoparticle systems and shows that they are magnetic-field dependent.

“The effective magnetic moment of such a multicore nanoparticle depends on various parameters, such as the size of magnetic crystallites, their packing density, core configuration and the magnetic interaction between them,” said Frank Ludwig, one of the authors of the paper.

Many experimental findings indicate that the ensemble of crystallites behaves like a single magnetic core with some effective magnetic moment. Research has been directed toward determining how this effective magnetic moment is related to the number and size of crystallites inside one multicore nanoparticle because many applications require a large magnetic moment, which, e.g., determines the strength of the magnetic force needed for their manipulation.

The paper’s findings are important for researchers optimizing magnetic nanoparticles for various applications, including magnetic hyperthermia and magnetic drug targeting, two new frontiers in cancer therapy.

In magnetic hyperthermia, the nanoparticles are located at the tumor cells. A magnetic field with a frequency and amplitude that will heat the nanoparticles to a temperature of approximately 42-44 degrees Celsius is applied, which kills the tumor cells.

In magnetic drug targeting, the capsule with drugs and magnetic particles is directed to the tumor by magnetic field gradients. When they arrive at the tumor, the drugs are released from the capsule by various techniques. Targeted drug therapy can result in dramatic reduction of doses and side effects versus traditional chemotherapy.

Technical applications of nanoparticles range from new magnetic storage media to nanorobots. Storage media made of nanoparticles are much smaller than existing media and can store greater amounts of data. Nanorobots are machines that can build and manipulate things precisely at an atomic level and can be used in a wide variety of contexts such as miniscule sensors that monitor blood chemistry.

Ludwig said continuing to gain a better understanding of the effective magnetic moment of multicore nanoparticles and, especially, its field dependence is essential for both basic science and applications.

###

The article, “Magnetic field dependence of the effective magnetic moment of multi-core nanoparticles,” is authored by Tamara Kahmann and Frank Ludwig. The article will appear in the Journal of Applied Physics on June 16, 2020 (DOI: 10.1063/5.0011629). After that date, it can be accessed at https://aip.scitation.org/doi/10.1063/5.0011629.

ABOUT THE JOURNAL

The Journal of Applied Physics is an influential international journal publishing significant new experimental and theoretical results in all areas of applied physics. See https://aip.scitation.org/journal/jap.

Media Contact
Larry Frum
[email protected]

Related Journal Article

http://dx.doi.org/10.1063/5.0011629

Tags: Atomic/Molecular/Particle PhysicsChemistry/Physics/Materials SciencesElectromagneticsMaterialsNanotechnology/MicromachinesTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

First-ever observation of the transverse Thomson effect unveiled

August 23, 2025
blank

Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

August 23, 2025

New Molecular-Merged Hypergraph Neural Network Enhances Explainable Predictions of Solvation Gibbs Free Energy

August 22, 2025

Shaping the Future of Dysphagia Diets Through 3D Printing Innovations

August 22, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    85 shares
    Share 34 Tweet 21
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Creating the Pediatric Weight Questionnaire for Youth Obesity

Exploring Tadpole Buccopharyngeal Morphology in Sphaenorhynchini

Triglyceride-Glucose and Waist Circumference: Diabetes Risk Insights

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.