• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

High color purity 3D printing

Bioengineer by Bioengineer
May 7, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: ICFO

Selective powder sintering for 3D printing has recently become an increasingly affordable solution for manufacturing made-to-order elements of almost any shape or geometry. This technique involves heating a bed of powder (such as polyamide, PA12) to just below its melting point, using an IR light source to selectively melt a cross section of the powder, then adding more powder and repeating to form a 3D object. To reduce costs and increase printing speed, a photothermal sensitizer is often added to the powders. Typically carbon-based, with a strong broadband absorption, adding these sensitizers to the polymer powders increases the conversion of incident light to heat, which means greater print speeds. However, carbon-based sensitizers can only produce black or gray objects. To create white or colorful prints, visibly transparent equivalents are needed.

A study conducted a few years ago by a team of researchers at ICFO, first authored by Alexander Powell and led by ICREA Professors at ICFO Gerasimos Konstantatos, and Romain Quidant, reported on a solution for overcoming color restrictions in this method using plasmonic nanoparticles. The researchers designed gold nanoparticles coated with silica as a photothermal sensitizer to allow a rapid sintering of polymer powders into 3D objects by having these nanoparticles strongly absorb in the near-infrared, while only minimally interacting with visible light. At resonance, these composites showed greatly improved light-to-heat conversion compared with equivalent composites and could be sintered using low-power light sources. While these particles showed to be very efficient for the rapid fabrication of colored 3D objects, they proved to have certain limitations when trying to print 3D objects in pure white color or multicolor with high color fidelity across a large hue range affecting the quality of the coloration of prints in high concentrations.

Thus, in a recent study published in NanoLetters, the ICFO researchers Alexander Powell, Alexandros Stavrinadis, and Sotirios Christodoulou, led by ICREA Professors at ICFO Gerasimos Konstantatos, and Romain Quidant, have now reported on the use a new sensitizer that has proven to easy overcome these problems.

In their study, the team of researchers has reported on using nanoparticles made of tungsten oxide (WO3) as the photothermal sensitizers for polymer powders. These nanoparticles comprise low cost elements, which make them easy and cheap to fabricate. They are colorless at high concentrations and have a strong absorption in the near infrared region, proving their capability of turning light into heat at a fast rate, and thus enabling them as fast fusing agents. In addition, they can be efficiently turned on or off with electricity or ultraviolet radiation. Even more, they are stable at very high temperatures and demonstrate a heating-to-color change rate superior when compared to other available sensitizers. Finally, when mixed with other color inks, these nanoparticles have been able to reproduce the same shades of color as the original powders, maintaining the color purity of the pristine samples.

The results of the study open a new pathway for the use of plasmonic nanoparticles that can be used to produce high color quality 3D-multicolor objects for advanced manufacturing processes.

###

LINKS

Link to the paper: https://pubs.acs.org/doi/10.1021/acs.nanolett.0c00414

Link to the research group led by ICREA Prof. at ICFO Gerasimos Konstantatos: https://www.icfo.eu/lang/research/groups/groups-details?group_id=30

Link to the research group led by ICREA Prof. at ICFO Romain Quidant: https://www.icfo.eu/lang/research/groups/groups-details?group_id=27

Media Contact
Alina Hirschmann
[email protected]

Tags: Chemistry/Physics/Materials SciencesMaterialsMolecular PhysicsNanotechnology/MicromachinesPolymer ChemistryTechnology Transfer
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

Digital Health Perspectives from Baltic Sea Experts

Florida Cane Toad: Complex Spread and Selective Evolution

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.