• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Lipid gradient that keeps your eyes wet

Bioengineer by Bioengineer
April 7, 2020
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Hokkaido University

New understandings of how lipids function within tears could lead to better drugs for treating dry eye disease.

A new approach has given Hokkaido University researchers insight into the synthesis and functions of lipids found in tears. Their findings, published in the journal eLife, could help the search for new treatments for dry eye disease.

The film of tears covering the eye’s surface is vital for eliminating foreign objects, providing oxygen and nutrients to the eye’s outer tissues, and reducing friction with the eyelid. The film is formed of an outer lipid layer and an inner liquid layer. The outer lipid layer, which is itself formed of two sublayers, prevents water evaporation from the liquid layer. Dry eye disease develops when the glands that produce these lipids dysfunction. However, it has remained unclear how those generally incompatible layers — water and lipid — can form and maintain tear films.

Hokkaido University biochemist Akio Kihara and colleagues wanted to understand the functions of a subclass of lipids called OAHFAs (O-Acyl)-ω-hydroxy fatty acids) that are present in the inner lipid sublayer (amphiphilic lipid sublayer) just above the liquid layer of the tear film. OAHFAs are known to have both polar and non-polar ends in its molecule, giving them affinity for both water and lipid.

To do this, they turned off a gene called Cyp4f39 in mice that is known for its involvement in ω-hydroxy fatty acid synthesis. Previous attempts at studying the gene’s functions in this way had led to neonatal death in mice, as it impaired the skin’s protective role. The team used a way to turn the gene off, except in the skin.

The mice were found to have damaged corneas and unstable tear films, both indicative of dry eyes. Further analyses showed that these mice were lacking OAHFAs and their derivatives in their tear films. Interestingly, the scientists also discovered that the OAHFA derivatives have polarities intermediate between OAHFAs and other lipids in the tear film. This strongly suggests that those lipids together form a polarity gradient that plays an important role in connecting the tear film’s inner liquid layer and outer lipid layer, helping the film spread uniformly over the surface of the eye.

“Drugs currently used in dry eye disease target the liquid layer of the tear film, but there aren’t any drugs that target its lipid layer,” says Akio Kihara. “Since most cases of dry eye disease are caused by abnormalities in the lipid layer, eye drops containing OAHFAs and their derivatives could be an effective treatment.”

Further studies are required to fully understand the functions and synthesis of OAHFAs.

###

Media Contact
Naoki Namba
[email protected]

Original Source

https://www.global.hokudai.ac.jp/blog/lipid-gradient-that-keeps-your-eyes-wet/

Related Journal Article

http://dx.doi.org/10.7554/eLife.53582

Tags: BiochemistryBiologyMedicine/HealthMolecular BiologyPhysiology
Share12Tweet8Share2ShareShareShare2

Related Posts

“’Cool’ Signs Transformed by Vibrant, Flexible Electronic Display Technology”

“’Cool’ Signs Transformed by Vibrant, Flexible Electronic Display Technology”

November 12, 2025
Didn’t catch the live session? Watch the full recording now!

Didn’t catch the live session? Watch the full recording now!

November 12, 2025

Scientists Discover True Ferrielectric Material, Unveiling New Polar Order

November 11, 2025

Revolutionary Laser Cooling Achieved: Stable Molecule Trapped Using Deep Ultraviolet Light

November 11, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    317 shares
    Share 127 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    209 shares
    Share 84 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    140 shares
    Share 56 Tweet 35
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1305 shares
    Share 521 Tweet 326

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Reduced LRIG1 Expression Associated with Aggressive Glioma Progression

Study Shows AI Enables Personalized Learning on a Large Scale

Nitric Oxide Enhances Drought Tolerance in Bean Plants

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.