• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, October 4, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Mucus and the coronavirus

Bioengineer by Bioengineer
March 31, 2020
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

University of Utah biomedical engineers will study the role mucus plays in spreading a coronavirus like COVID-19

IMAGE

Credit: Dan Hixson/University of Utah College of Engineering

March 31, 2020 — As the lethal COVID-19 coronavirus propagates around the globe, we know a sneeze, a cough or simply touching a surface with the virus can spread the infection.

What researchers don’t know is exactly the role different compositions of mucus, the slimy substance on human tissue, play in the transmission and infection of coronaviruses. Nor do they know why some people known as “super-spreaders” will spread the disease more than others. But University of Utah biomedical engineering assistant professor Jessica R. Kramer is now researching how mucus plays a part in transferring coronaviruses from person to person.

“Not everyone spreads the disease equally. The quality of their mucus may be part of the explanation,” Kramer says. “One person may sneeze and transmit it to another person, and another may not, and that is not well understood.”

She has received a one-year, $200,000 Rapid Response Research (RAPID) grant from the National Science Foundation for the research.

Understanding how different compositions of the proteins that make up mucus spread coronaviruses could help identify those who are “super-spreaders” as well as those who could be more vulnerable to becoming infected, says Kramer. That could lead to faster, more accurate data on who will spread the virus or more effective quarantine measures for high-risk populations. The nation’s epidemiologists have said since the arrival of COVID-19 that accurate testing to know where the infection is growing is a key factor to containing its spread.

Kramer and her team will create different forms of synthetic mucins, the proteins that make up mucus, and test them with non-hazardous versions of coronaviruses. COVID-19, which is the cause of the worldwide pandemic, is a novel coronavirus that by the end of March has so far killed more than 37,000 people since it was first discovered late last year. But it is only one of many forms of coronaviruses.

Kramer will use special aerosols in a closed environment to simulate coughing to help determine how different mucins carry the virus through the air. She will also test the viability of the virus when it lands on a surface based on the mucins that carry it. Her lab will also examine how mucin composition on the next victim’s mouth, eyes or lungs affects whether the virus makes it through the mucus into their cells to replicate.

The composition of mucus changes from person to person based on their genetics, environmental factors, or their lifestyle such as whether the person smokes or what their diet is. “It’s important that people understand that it’s not only the amount of mucus that is a factor but how the molecular composition is different,” she says.

Kramer’s lab at the University of Utah has been creating synthetic mucins and more recently studying how mucins and bacteria interact with each other. She says researching how mucins interact with viruses is a natural extension of this work.

###

Kramer’s award is the second NSF RAPID grant to be given to U researchers related to the spread of the COVID-19 coronavirus. Michael Vershinin and Saveez Saffarian of the U’s Department of Physics & Astronomy will study how the structure of the coronavirus withstands changes in humidity and temperature and under what conditions the virus falls apart.

This news release and photos may be downloaded from unews.utah.edu.

Media Contact
Jessica R. Kramer
[email protected]

Tags: Biomedical/Environmental/Chemical EngineeringDisease in the Developing WorldEpidemiologyInfectious/Emerging DiseasesMedicine/HealthPublic Health
Share12Tweet8Share2ShareShareShare2

Related Posts

DOG Gene Family in Wheat Drives Seed Dormancy

DOG Gene Family in Wheat Drives Seed Dormancy

October 4, 2025
blank

Discovery of MrSTP20: Sugar Transporter in Salt Stress

October 4, 2025

SNARE Neofunctionalization Driven by Vacuole Retrieval

October 4, 2025

Exploring Shigella Phage Sf14’s tRNA Contributions

October 3, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    93 shares
    Share 37 Tweet 23
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    89 shares
    Share 36 Tweet 22
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19
  • New Insights Suggest ALS May Be an Autoimmune Disease

    69 shares
    Share 28 Tweet 17

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Key Skills for New ICU Nurses in Iran

Acylation Shapes Immunotherapy Success in Liver Cancer

EYA1 Boosts Colorectal Cancer Angiogenesis via HIF-1β Activation

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.