• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Mucus and the coronavirus

Bioengineer by Bioengineer
March 31, 2020
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

University of Utah biomedical engineers will study the role mucus plays in spreading a coronavirus like COVID-19

IMAGE

Credit: Dan Hixson/University of Utah College of Engineering

March 31, 2020 — As the lethal COVID-19 coronavirus propagates around the globe, we know a sneeze, a cough or simply touching a surface with the virus can spread the infection.

What researchers don’t know is exactly the role different compositions of mucus, the slimy substance on human tissue, play in the transmission and infection of coronaviruses. Nor do they know why some people known as “super-spreaders” will spread the disease more than others. But University of Utah biomedical engineering assistant professor Jessica R. Kramer is now researching how mucus plays a part in transferring coronaviruses from person to person.

“Not everyone spreads the disease equally. The quality of their mucus may be part of the explanation,” Kramer says. “One person may sneeze and transmit it to another person, and another may not, and that is not well understood.”

She has received a one-year, $200,000 Rapid Response Research (RAPID) grant from the National Science Foundation for the research.

Understanding how different compositions of the proteins that make up mucus spread coronaviruses could help identify those who are “super-spreaders” as well as those who could be more vulnerable to becoming infected, says Kramer. That could lead to faster, more accurate data on who will spread the virus or more effective quarantine measures for high-risk populations. The nation’s epidemiologists have said since the arrival of COVID-19 that accurate testing to know where the infection is growing is a key factor to containing its spread.

Kramer and her team will create different forms of synthetic mucins, the proteins that make up mucus, and test them with non-hazardous versions of coronaviruses. COVID-19, which is the cause of the worldwide pandemic, is a novel coronavirus that by the end of March has so far killed more than 37,000 people since it was first discovered late last year. But it is only one of many forms of coronaviruses.

Kramer will use special aerosols in a closed environment to simulate coughing to help determine how different mucins carry the virus through the air. She will also test the viability of the virus when it lands on a surface based on the mucins that carry it. Her lab will also examine how mucin composition on the next victim’s mouth, eyes or lungs affects whether the virus makes it through the mucus into their cells to replicate.

The composition of mucus changes from person to person based on their genetics, environmental factors, or their lifestyle such as whether the person smokes or what their diet is. “It’s important that people understand that it’s not only the amount of mucus that is a factor but how the molecular composition is different,” she says.

Kramer’s lab at the University of Utah has been creating synthetic mucins and more recently studying how mucins and bacteria interact with each other. She says researching how mucins interact with viruses is a natural extension of this work.

###

Kramer’s award is the second NSF RAPID grant to be given to U researchers related to the spread of the COVID-19 coronavirus. Michael Vershinin and Saveez Saffarian of the U’s Department of Physics & Astronomy will study how the structure of the coronavirus withstands changes in humidity and temperature and under what conditions the virus falls apart.

This news release and photos may be downloaded from unews.utah.edu.

Media Contact
Jessica R. Kramer
[email protected]

Tags: Biomedical/Environmental/Chemical EngineeringDisease in the Developing WorldEpidemiologyInfectious/Emerging DiseasesMedicine/HealthPublic Health
Share12Tweet8Share2ShareShareShare2

Related Posts

ORC2’s Role in Human Gene Expression Reveals Surprising Extent and Impact

ORC2’s Role in Human Gene Expression Reveals Surprising Extent and Impact

August 14, 2025
Advances in Synthetic Telomerase RNA and Polygenic Score Development Unlock New Insights into Telomere Biology

Advances in Synthetic Telomerase RNA and Polygenic Score Development Unlock New Insights into Telomere Biology

August 14, 2025

Streamlined Genomes, Maximum Efficiency: How Symbiotic Bacteria with Minimal DNA Deliver Optimal Support to Their Hosts

August 14, 2025

Unveiling Biomarkers and Pathogenesis of Myocardial Infarction Linked to Ankylosing Spondylitis Through Systems Biology

August 14, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    58 shares
    Share 23 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Rare Ovarian Tumor Masquerading as Pregnancy Successfully Treated in Uncommon Case

Worcester Polytechnic Institute Chosen as Principal Partner in National Initiative to Enhance Cybersecurity and AI Training for U.S. Automotive Innovation

Advancing Agricultural Decarbonization Through Expanded Low-Carbon Biofuel Policies

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.