• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

How trans fats assist cell death

Bioengineer by Bioengineer
March 25, 2020
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Some trans fats enhance a pathway inside the cell that leads to cell death; drugs targeting this mechanism could help address diseases associated with these fats

IMAGE

Credit: Tohoku University


Tohoku University researchers in Japan have uncovered a molecular link between some trans fats and a variety of disorders, including cardiovascular and neurodegenerative diseases. Their findings, published in the journal Scientific Reports, implicate their role in enhancing a mitochondrial signalling pathway that leads to programmed cell death.

“Accumulating evidence has associated the consumption of trans-fatty acids with various diseases, including some lifestyle diseases, atherosclerosis and dementia. But the underlying causes have remained largely unknown,” says Atsushi Matsuzawa of Tohoku University’s Laboratory of Health Chemistry.

Matsuzawa and a team of researchers explored the effects of two trans fats produced during industrial food manufacturing, elaidic and linoelaidic acids, on programmed cell death.

Cells instigate programmed cell death, which is called apoptosis, if their DNA is damaged beyond repair. DNA damage can occur in response to a variety of factors, including reactive oxygen species, ultraviolet irradiation and anti-cancer drugs. Normally, cells counteract this process by repairing the lesions. But problems in the DNA damage response can lead to diseases also associated with trans fats.

The researchers induced DNA damage in cells using the anti-cancer drug doxorubicin. They found that elaidic and linoelaidic acids enhanced the apoptosis that followed. Other unsaturated fatty acids did not have the same effect.

Specifically, they found the fatty acids affected mitochondria, the energy-generating powerhouses of cells. DNA damage activates a signalling loop inside mitochondria that generates reactive oxygen species, which ultimately promote apoptosis. The industrial trans fats enhanced mitochondria’s production of reactive oxygen species through this signalling loop, and thus increased apoptosis.

Apoptosis is thought to lead to the development and progression of disorders associated with industrial trans fats, such as the build-up of plaque inside arteries, called atherosclerosis.

“Our research revealed a novel toxic function and mechanism of action of trans-fatty acids, which can account for pathological mechanisms, including atherosclerosis,” says Matsuzawa. “This significant finding will provide a molecular basis to understand how trans-fatty acids cause disease.”

The researchers theorize that targeting this molecular mechanism with drugs might have a therapeutic effect on a diverse range of trans-fat-associated diseases. The team plans to further investigate this link and the extent to which this mechanism contributes to these diseases. They also aim to determine the differences in toxicity between different trans fats.

###

Media Contact
Atsushi Matsuzawa
[email protected]
81-227-956-827

Original Source

https://www.tohoku.ac.jp/en/press/how_trans_fats_assist_cell_death.html

Related Journal Article

http://dx.doi.org/10.1038/s41598-020-59636-6

Tags: Diet/Body WeightMedicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

DFG Funds Enhanced Reliability in Evaluations of Statistical Methods

August 12, 2025
Glutamatergic Synapses Resist Human Alpha-Synuclein Overexpression

Glutamatergic Synapses Resist Human Alpha-Synuclein Overexpression

August 12, 2025

Advancing Cancer Care: The Promise of Antitumor mRNA-Based Vaccines in Personalized Treatment

August 12, 2025

Embryonic Factors Reverse ALS Damage in Motor Neurons

August 12, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    78 shares
    Share 31 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    57 shares
    Share 23 Tweet 14
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

BTI, Meiogenix, and FFAR Launch $2 Million Collaborative Project to Advance Tomato Genetics

DFG Funds Enhanced Reliability in Evaluations of Statistical Methods

Kennesaw State Physics Professor Awarded Three-Year Grant to Develop Particle Collider Simulations

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.