• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

NUI Galway highlights reproductive flexibility in hydractinia, a Galway bay jellyfish

Bioengineer by Bioengineer
February 21, 2020
in Health
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Study shows how the jellyfish Hydractinia produces eggs and sperm more flexibly than humans

IMAGE

Credit: Dr Tim DuBuc


A new study, led by Dr Tim DuBuc and Professor Uri Frank from the Centre for Chromosome Biology at NUI Galway, has found that Hydractinia, a North Atlantic jellyfish that also lives in Galway Bay, reproduces in a similar way to humans but does so far more flexibly.

An article presenting these findings has been published today in the journal Science, with co-authors Dr Andy Baxevanis from the National Human Genome Research Institute of the US National Institutes of Health and Dr Christine Schnitzler from the Whitney Laboratory of Marine Bioscience of the University of Florida.

Most animals, including humans, generate germ stem cells – the exclusive progenitors of eggs and sperm – only once in their lifetime. This process occurs during early embryonic development by setting aside (or ‘sequestering’) a small group of cells. All sperm or eggs that we humans produce during our lives are the descendants of those few cells we sequestered as early embryos. Importantly, there is no way for humans to replenish germ cells that were not sequestered during embryonic development or lost in adult life, resulting in sterility.

In findings that may have implications for the study of human infertility, this research shows that Hydractinia uses a gene called Tfap2 as a ‘switch’ to commit its adult stem cells to produce gametes – eggs and sperm. Humans also use Tfap2 to commit cells to gamete production but only go through this process once, in a narrow time frame during embryonic development. In contrast, Hydractinia performs this process throughout its adult life. Therefore, the loss of germ cells in Hydractinia has no consequences with respect to fertility as its germ cells can be generated throughout its lifetime.

Speaking today, Professor Uri Frank explained: “Looking at the similar, yet more flexible, system of reproduction in Hydractinia broadens our understanding of the issues affecting reproduction in humans. While much of a human’s capacity to reproduce is determined during embryonic development, we see that these jellyfish are far more adaptive and have a much greater capacity to regenerate their reproductive system throughout their adult lives. By looking at these genetically more tractable animals, we hope to understand core processes that control cells’ decisions in development and disease.”

###

The full article is published in Science and available at: https://science.sciencemag.org/cgi/doi/10.1126/science.aay6782

Media Contact
Sheila Gorham
[email protected]
003-539-149-3543

Original Source

http://www.nuigalway.ie/about-us/news-and-events/news-archive/2020/february/nui-galway-highlights-reproductive-flexibility-in-hydractinia-a-galway-bay-jellyfish—.html

Tags: BiologyCell BiologyDevelopmental/Reproductive BiologyEcology/EnvironmentGeneticsHealth CareMarine/Freshwater BiologyMedicine/HealthZoology/Veterinary Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

February 7, 2026

Digital Health Perspectives from Baltic Sea Experts

February 7, 2026

Exploring Decision-Making in Dementia Caregivers’ Mobility

February 7, 2026

Succinate Receptor 1 Limits Blood Cell Formation, Leukemia

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

Digital Health Perspectives from Baltic Sea Experts

Florida Cane Toad: Complex Spread and Selective Evolution

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.