• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Stressed corals set up progeny for a better life

Bioengineer by Bioengineer
February 19, 2020
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: © 2020 Emily Howells


Changes in DNA methylation patterns during a coral’s lifetime can be passed down to their progeny. KAUST researchers believe they have found the first evidence of this change, and they suggest that the finding could help develop new strategies for coral conservation.

DNA methylation is the reversible attachment of a methyl group to a cytosine, one of the four nitrogenous bases that form the building blocks of our genomes. It is an epigenetic change that modifies how a gene is used.

“In mammals, DNA methylation patterns are reset across generations, except in rare exceptions,” says postdoc Yi Jin Liew. “In plants, however, they are mostly inherited across generations.”

Previous research led by KAUST marine scientist Manuel Aranda had shown that chronically stressed corals develop changes in their epigenetic patterns. “We were curious to find out if corals, like plants, could pass epigenetic information to the next generation,” says Liew. “From a biological perspective, this would shatter the common assumption that epigenetic patterns are reset across generations in all animals.”

Together with scientists from New York University Abu Dhabi, KAUST researchers analyzed the genomes of adult brain corals (Platygyra daedalea), their sperm and larvae that had been collected from reef sites in Abu Dhabi in the southern Arabian Gulf and from Fujairah in the Sea of Oman. The Abu Dhabi corals had been exposed to extreme temperatures and salinity, while the Fujairah ones lived in more moderate conditions.

“Our initial results were startling,” says Liew.

The analyses showed that the DNA methylation patterns were most similar between sperm and their parent coral. “We think this is the first solid proof for intergenerational transfer of whole-genome DNA methylation patterns in an animal,” Liew says.

The team found clear differences in the methylation patterns between the Abu Dhabi and Fujairah corals. They also found that DNA methylation patterns are passed equally from parent to progeny through the egg and sperm.

Further investigations confirmed that inheritance of the DNA methylation patterns was mostly independent from genetic inheritance, meaning that they are probably a response to the different environments in which these corals exist. This was supported by heat stress experiments on larvae from these colonies, which showed that the methylation status of certain genes correlated strongly with their chances of survival.

Coral colonies from the much hotter Arabian Gulf also had hypermethylated genes involved in stress responses, potentially allowing them to cope with their harsh environment.

“Inheritance of these novel epigenetic states could serve as a nongenetic breeding strategy to potentially increase resilience to climate change,” says Aranda. “Long-term cultivation of corals under elevated temperatures could allow us to breed fitter coral larvae that get a head start in globally rising temperatures.”

Aranda says further investigations are needed to verify that environmentally induced epigenetic patterns can be maintained across more than one generation and that these inherited changes could provide a survival advantage for corals and their offspring.

###

Media Contact
Carolyn Unck
[email protected]

Original Source

https://discovery.kaust.edu.sa/en/article/937/stressed-corals-set-up-progeny-for-a-better-life

Related Journal Article

http://dx.doi.org/10.1038/s41558-019-0687-2

Tags: BiologyClimate ChangeEcology/EnvironmentGeneticsMarine/Freshwater Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

Enhancing Cellular Self-Organization for Optimal Function

Enhancing Cellular Self-Organization for Optimal Function

August 21, 2025
Innovative Tracer Lets Surgeons Visualize and Hear Prostate Cancer

Innovative Tracer Lets Surgeons Visualize and Hear Prostate Cancer

August 21, 2025

Ume6 Complexes Shape Candida Biofilm Architecture

August 21, 2025

Think you can outsmart an island fox? Think again!

August 21, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Maternal and Infant Gut Microbiota Linked to Infant Respiratory Infections

Wearable Devices Improve Parkinson’s Medication Adjustments: Trial

Beijing Tiantan Hospital Researchers Develop Innovative One-Stage Hybrid Surgery for Brain and Spine Tumors

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.